Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We classify the ( finite and infinite) virtually cyclic subgroups of the pure braid groups P(n)(RP(2)) of the projective plane. The maximal finite subgroups of P(n)(RP(2)) are isomorphic to the quaternion group of order 8 if n = 3, and to Z(4) if n >= 4. Further, for all n >= 3, the following groups are, up to isomorphism, the infinite virtually cyclic subgroups of P(n)(RP(2)): Z, Z(2) x Z and the amalgamated product Z(4)*(Z2)Z(4). International Cooperation USP/COFECUB International Cooperation USP/COFECUB[105/06] Universite Paul Sabatier Universite Paul Sabatier Pro-Reitoria de Pesquisa Projeto 1 Pro-Reitoria de Pesquisa Projeto 1 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Projeto Tematico FAPESP[2004/10229-6] |
Identificador |
JOURNAL OF GROUP THEORY, v.13, n.2, p.277-294, 2010 1433-5883 http://producao.usp.br/handle/BDPI/30731 10.1515/JGT.2009.040 |
Idioma(s) |
eng |
Publicador |
WALTER DE GRUYTER & CO |
Relação |
Journal of Group Theory |
Direitos |
closedAccess Copyright WALTER DE GRUYTER & CO |
Palavras-Chave | #SPHERE #SURFACE #SPACES #Mathematics |
Tipo |
article original article publishedVersion |