On automorphisms of split metacyclic groups
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let D( m, n; k) be the semi-direct product of two finite cyclic groups Z/m = < x > and Z/n = < y >, where the action is given by yxy(-1) = x(k). In particular, this includes the dihedral groups D(2m). We calculate the automorphism group Aut (D(m, n; k)). |
Identificador |
MANUSCRIPTA MATHEMATICA, v.128, n.2, p.251-273, 2009 0025-2611 http://producao.usp.br/handle/BDPI/30600 10.1007/s00229-008-0233-4 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Manuscripta Mathematica |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #SPHERICAL SPACE-FORMS #Z/A X Z/B #SELF-EQUIVALENCES #HOMOTOPY TYPES #P-GROUPS #Mathematics |
Tipo |
article original article publishedVersion |