168 resultados para INTELIGENCIA ARTIFICIAL
Resumo:
Comunicación presentada en la VI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'95), Alicante, 15-17 noviembre 1995.
Resumo:
Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.
Resumo:
Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.
Resumo:
Comunicación presentada en la VII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA, Málaga, 12-14 noviembre, 1997.
Resumo:
Comunicación presentada en SCETA, Seminario Sobre Computación Evolutiva, celebrado en la VII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA, Málaga, 12-14 noviembre 1997.
Resumo:
Comunicación presentada en el VIII Simposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, Bilbao, mayo 1999.
Resumo:
Comunicación presentada en el IX Workshop de Agentes Físicos (WAF'2008), Vigo, 11-12 septiembre 2008.
Resumo:
Comunicación presentada en el XI Workshop of Physical Agents, Valencia, 9-10 septiembre 2010.
Resumo:
Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.
Resumo:
Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.
Resumo:
Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).
Resumo:
In this paper we introduce a probabilistic approach to support visual supervision and gesture recognition. Task knowledge is both of geometric and visual nature and it is encoded in parametric eigenspaces. Learning processes for compute modal subspaces (eigenspaces) are the core of tracking and recognition of gestures and tasks. We describe the overall architecture of the system and detail learning processes and gesture design. Finally we show experimental results of tracking and recognition in block-world like assembling tasks and in general human gestures.
Resumo:
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
In this paper, we present a novel coarse-to-fine visual localization approach: contextual visual localization. This approach relies on three elements: (i) a minimal-complexity classifier for performing fast coarse localization (submap classification); (ii) an optimized saliency detector which exploits the visual statistics of the submap; and (iii) a fast view-matching algorithm which filters initial matchings with a structural criterion. The latter algorithm yields fine localization. Our experiments show that these elements have been successfully integrated for solving the global localization problem. Context, that is, the awareness of being in a particular submap, is defined by a supervised classifier tuned for a minimal set of features. Visual context is exploited both for tuning (optimizing) the saliency detection process, and to select potential matching views in the visual database, close enough to the query view.