A novel information theory method for filter feature selection


Autoria(s): Bonev, Boyan; Escolano Ruiz, Francisco; Cazorla, Miguel
Contribuinte(s)

Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial

Robótica y Visión Tridimensional (RoViT)

Laboratorio de Investigación en Visión Móvil (MVRLab)

Data(s)

13/07/2012

13/07/2012

2007

Resumo

In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.

This research is funded by the project DPI2005-01280 from the Spanish Government.

Identificador

BONEV, Boyan; ESCOLANO, Francisco; CAZORLA, Miguel Ángel. "A novel information theory method for filter feature selection". En: MICAI 2007: Advances in Artificial Intelligence 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007, Proceedings / Alexander Gelbukh, Ángel Fernando Kuri Morales (Eds.). Berlin : Springer, 2007. (Lecture Notes in Computer Science; 4827). ISBN 978-3-540-76630-8, pp. 431-440

978-3-540-76630-8

0302-9743 (Print)

1611-3349 (Online)

http://hdl.handle.net/10045/23400

10.1007/978-3-540-76631-5_41

Idioma(s)

eng

Publicador

Springer Berlin / Heidelberg

Relação

http://dx.doi.org/10.1007/978-3-540-76631-5_41

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Filter feature selection #Information theory method #Mutual information estimation #Entropy estimation #Ciencia de la Computación e Inteligencia Artificial
Tipo

info:eu-repo/semantics/conferenceObject