Constellations and the unsupervised learning of graphs


Autoria(s): Bonev, Boyan; Escolano Ruiz, Francisco; Lozano Ortega, Miguel Ángel; Suau Pérez, Pablo; Cazorla, Miguel; Aguilar, Wendy
Contribuinte(s)

Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial

Robótica y Visión Tridimensional (RoViT)

Laboratorio de Investigación en Visión Móvil (MVRLab)

Data(s)

13/07/2012

13/07/2012

2007

Resumo

In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.

Identificador

BONEV, Boyan, et al. "Constellations and the unsupervised learning of graphs". En: Graph-Based Representations in Pattern Recognition : 6th IAPR-TC-15 International Workshop, GbRPR 2007, Alicante, Spain, June 11-13, 2007, Proceedings / Francisco Escolano, Mario Vento (Eds.). Berlin : Springer, 2007. (Lecture Notes in Computer Science; 4538). ISBN 978-3-540-72902-0, pp. 340-350

978-3-540-72902-0

0302-9743 (Print)

1611-3349 (Online)

http://hdl.handle.net/10045/23399

10.1007/978-3-540-72903-7_31

Idioma(s)

eng

Publicador

Springer Berlin / Heidelberg

Relação

http://dx.doi.org/10.1007/978-3-540-72903-7_31

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Unsupervised clustering of graphs #Constellation approach #Object recognition #Ciencia de la Computación e Inteligencia Artificial
Tipo

info:eu-repo/semantics/conferenceObject