67 resultados para Milk - Pasteurization
Inactivation of Mycobacterium avium subsp. paratuberculosis in milk during commercial pasteurisation
Resumo:
Four studies have been published relating to the inactivation of Mycobacterium avium subsp. paratuberculosis (Map) by commercial HTST pasteurization. Three of these were large surveys of commercially pasteurized milk at processing/retail level in the UK and Ontario, Canada, and the fourth a pasteurization study involving naturally infected milk and commercial-scale pasteurizing plant. Evidence that Map is capable of surviving commercial pasteurization was obtained in two of the studies: viable Map was cultured from 50 ml aliquots of commercially pasteurized milk after decontamination with 0.75% cetylpyridinium chloride for 5 h and then culture on Herrold's egg-yolk medium without antibiotics. In both studies culture did not commence until 24-72 h post-pasteurization and samples were stored at 4 degrees C in the interim period. In the other two milk surveys smaller volumes of milk were tested (1-5 ml and 15 ml) and no firm evidence of surviving Map was obtained. The three milk surveys differed in other respects - chemical decontamination, culture media used and use of antibiotics. Recent findings suggest that sub-lethally heat-injured Map in pasteurized milk have the potential to recover viability if stored at 4 degrees C for 48 h between heating and testing.
Resumo:
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease in cattle and other ruminants and has been implicated as a possible cause of Crohn's disease in humans. The organism gains access to raw milk directly through excretion into the milk within the udder and indirectly through faecal contamination during milking. MAP has been shown to survive commercial pasteurization in naturally infected milk, even at the extended holding time of 25 s. Pasteurized milk must therefore be considered a vehicle of transmission of MAP to humans. isolation methods for MAP from milk are problematical, chiefly because of the absence of a suitable selective medium. This makes food surveillance programs and research on this topic difficult. The MAP problem can be addressed in two main ways: by devising a milk-processing strategy that ensures the death of the organism: and/or strategies at farm level to prevent access of the organism into raw milk. Much of the research to date has been devoted to determining ifa problem exists and, if so, the extent of the problem. Little has been directed at possible solutions. Given the current state of information on this topic and the potential consequences for the dairy industry research is urgently needed so that a better understanding of the risks and the efficacy of possible processing solutions can be determined.
Resumo:
Consumption of milk and dairy products is considered one of the main routes of human exposure to Mycobacterium avium subsp. paratuberculosis (MAP). Quantitative data on MAP load in raw cows’ milk are essential starting point for exposure assessment. Our study provides this information on a regional scale, estimating the load of MAP in bulk tank milk (BTM) produced in Emilia-Romagna region (Italy). The survey was carried out on 2934 BTM samples (88.6% of the farms herein present) using two different target sequences for qPCR (f57 and IS900). Data about the performances of both qPCRs are also reported, highlighting the superior sensitivity of IS900-qPCR. Seven hundred and eighty-nine samples tested MAP-positive (apparent prevalence 26.9%) by IS900 qPCR. However, only 90 of these samples were quantifiable by qPCR. The quantifiable samples contained a median load of 32.4 MAP cells mL−1 (and maximum load of 1424 MAP cells mL−1). This study has shown that a small proportion (3.1%) of BTM samples from Emilia-Romagna region contained MAP in excess of the limit of detection (1.5 × 101 MAP cells mL−1), indicating low potential exposure for consumers if the milk subsequently undergoes pasteurization or if it is destined to typical hard cheese production.
Resumo:
The potential for physical removal of Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis) from milk by centrifugation and microfiltration was investigated by simulating commercial processing conditions in the laboratory by means of a microcentrifuge and syringe filters, respectively. Results indicated that both centrifugation of preheated milk (60 degrees C) at 7000 x g for 10 s, and microfiltration through a filter of pore size 1.2 mu m, were capable of removing up to 95-99.9% of M. paratuberculosis cells from spiked whole milk and Middlebrook 7H9 broth suspensions, respectively. Centrifugation and microfiltration may therefore have potential application within the dairy industry as pretreatments to reduce M. paratuberculosis contamination of raw milk.
Resumo:
The relationship between stockperson behaviour, measured as verbal and physical interactions with the dairy cows (no. ¼ 210), during milking and the subsequent milk yield obtained was examined. The numbers of steps and kicks made by the cows during milking was recorded. The behaviour of two stockteams, each consisting of two stockmen, were recorded over 10 weekend sessions. The two teams varied in the types of interactions and when the stockteam that performed more positive interactions worked with the cows (team A), the cows had a significantly higher milk yield (P , 0·05) although this difference was small (17·54 v. 17·44 kg). When team A was milking the cows also stepped and kicked on the platform significantly more ( P , 0·05) compared with team B. The results also indicated that while each stockteam tended to interact with the same cows each session, different stockpersons interacted with different cows. These findings highlight the importance of the role of the stockperson in milk output and dairy cow behaviour in a commercial setting.