40 resultados para ion beam epitaxy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel method for creating damage-free ferroelectric nanostructures with a focused ion beam milling machine. Using a standard e-beam photoresist followed by a dilute acid wash, nanostructures ranging in size from 1 mu m down to 250 nm were created in a 90 nm thick lead zirconate titanate ( PZT) wafer. Transmission electron microscopy and piezoresponse force microscopy ( PFM) confirmed that the surfaces of the nanostructures remained damage free during fabrication, and showed no gallium implantation, and that there was no degradation of ferroelectric properties. In fact DC strain loops, obtained using PFM, demonstrated that the nanostructures have a higher piezoresponse than unmilled films. As the samples did not have any top hard mask, the method presented is unique as it allows for imaging of the top surface to understand edge effects in well-defined nanostructures. In addition, as no post-mill annealing was necessary, it facilitates investigation of nanoscale domain mechanisms without process-induced artefacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focused ion beam microscope (FIB) has been used to fabricate thin parallel-sided ferroelectric capacitors from single crystals of BaTiO3 and SrTiO3. A series of nano-sized capacitors ranging in thickness from similar to660 nm to similar to300 nm were made. Cross-sectional high resolution transmission electron microscopy (HRTEM) revealed that during capacitor fabrication, the FIB rendered around 20 nm of dielectric at the electrode-dielectric interface amorphous, associated with local gallium impregnation. Such a region would act electrically in series with the single crystal and would presumably have a considerable negative influence on the dielectric properties. However, thermal annealing prior to gold electrodes deposition was found to fully recover the single crystal capacitors and homogenise the gallium profile. The dielectric testing of the STO ultra-thin single crystal capacitors was performed yielding a room temperature dielectric constant of similar to300, as is the case in bulk. Therefore, there was no evidence of a collapse in dielectric constant associated with thin film dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stable relativistic ion acceleration regime for thin foils irradiated by circularly polarized laser pulses is suggested. In this regime, the "light-sail" stage of radiation pressure acceleration for ions is smoothly connected with the initial relativistic "hole-boring" stage, and a defined relationship between laser intensity I(0), foil density n(0), and thickness l(0) should be satisfied. For foils with a wide range of n(0), the required I(0) and l(0) for the regime are theoretically estimated and verified with the particle-in-cell code ILLUMINATION. It is shown for the first time by 2D simulations that high-density monoenergetic ion beams with energy above GeV/u and divergence of 10 degrees are produced by circularly polarized lasers at intensities of 10(22) W/cm(2), which are within reach of current laser systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as 15% at 35 MeV. These results and high resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, ¼ 1054 nm). The conversion ef?ciency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.