21 resultados para Patrones fonológicos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3º y 4º de Educación Secundaria Obligatoria en la resolución del problema de las baldosas. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo, presentamos los resultados de investigación de una tesis de maestría realizada en México. Nuestro objetivo fue indagar cómo los estudiantes del Nivel Medio Superior, analizan secuencias de crecimiento visual, con base en representaciones gráficas, así como la forma en que expresan algebraicamente el patrón que subyace a una secuencia; teniendo como supuesto que el análisis visual organizado de las secuencias puede contribuir a la detección, formulación y generalización de patrones. Con base en nuestros resultados, afirmamos que la visualización juega diferentes papeles dentro del proceso de generalización, los cuales identificamos y clasificamos a la luz de la Teoría de la Objetivación y la Teoría de la Representaciones Semióticas. Proponemos una herramienta para discutir el papel y funcionamiento de la visualización en la generalización de patrones.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
En este artículo se propone una tipología de patrones de razonamiento proporcional con aplicación general a tareas matemáticas y científicas. También se describen algunos ejemplos de las estrategias y procedimientos seguidos por los estudiantes en una tarea de proporcionalidad de Química. Así mismo, se hace una discusión de los principales resultados obtenidos a partir del análisis de diversos problemas de proporciones resueltos por estudiantes de enseñanza secundaria.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
En esta propuesta queremos dar a conocer un taller que consideramos fiable, para ser puesto en el aula de clase y puesto a prueba en el área escolar, especialmente en bachillerato en el área de matemáticas; donde el niño se enfrentará al descubrimiento por sí solo de lo que sucede en una figura y a partir de regularidades, patrones; pueda expresar lo que encuentra desde la representación gráfica y tabular para llegar a la representación algebraica y a el significado y esencia del concepto de sucesión. Esta propuesta busca a través de figuras espiraladas introducir el trabajo con sucesiones donde se le propone al estudiante enfrentarse a una situación (observación de las figuras espiraladas) donde a partir de lo que ve: identifique, analice y deduzca el comportamiento de lo que sucede y pueda llevar esto a un lenguaje verbal y escrito con ayuda de representaciones gráficas y tabulares que le ayudarán a establecer regularidades y que permitirán dar sentido a lo que sucede con las figuras espiraladas.
Resumo:
In this paper we present an analysis of the inductive reasoning of twelve secondary students in a mathematical problem-solving context. Students were proposed to justify what is the result of adding two even numbers. Starting from the theoretical framework, which is based on Pólya’s stages of inductive reasoning, and our empirical work, we created a category system that allowed us to make a qualitative data analysis. We show in this paper some of the results obtained in a previous study.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.
Resumo:
Este artículo tiene un carácter nostálgico y evocador, pues hace el 30º de la serie. Resolvemos los problemas propuestos en el artículo anterior y planteamos nuevos ejercicios enmarcados como “Problemas de los abuelos”. Se hace especial hincapié en el proceso resolutivo, sus diferentes pasos y utilizando métodos tales como: ensayo y error; tablas de doble entrada o esquemas y la búsqueda de regularidades, patrones o modelos, actuando de manera que se orientan sus soluciones.
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.
Resumo:
El propósito de esta ponencia es presentar los resultados de una investigación que tuvo como objetivo analizar aspectos destacados para una comunicación apropiada en clase de matemáticas; entendida esta como la que ocurre en un espacio donde se promueve la interacción, la participación de los sujetos, la argumentación, el debate y la negociación de significados, teniendo en cuenta como aspecto central en la obtención de significados. Se desarrolló trabajando con dos poblaciones, una en el nivel básico y otra en educación superior. Se hizo un diagnóstico inicial sobre la forma como habitualmente se da la comunicación, estableciendo los patrones de interacción de esos docentes en sus clases. Se diseñaron y desarrollaron actividades específicas de clase, implementando una dinámica novedosa para el trabajo en grupo, como espacio de conjeturación, argumentación y debate hasta llegar a consensos. La investigación mostro cómo, con este tipo de estrategias la clase se convierte en una comunidad que hace, discute y aprende matemáticas.