147 resultados para Funciones elípticas
Resumo:
Se explica un proyecto sencillo de innovación educativa para introducir de manera intuitiva la caracterización épsilon-delta de límite a estudiantes de bachillerato.
Resumo:
En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.
Resumo:
Este capítulo es nuestro informe final de la unidad didáctica sobre razones trigonométricas. Es el trabajo final de MAD, la concentración en Educación Matemática de la maestría en Educación de la Universidad de los Andes. Este trabajo nace de constatar que muchos profesores de matemáticas de grado décimo usan las razones trigonométricas como herramienta para solucionar ejercicios de resolución de triángulos, aplicados a problemas, sin tener en cuenta el contexto propio del estudiante. De otro lado, la implementación en el aula de recursos o materiales para la enseñanza de la trigonometría se ha restringido al uso de la calculadora de funciones para determinar ángulos y longitudes en función de una razón trigonométrica particular. Desde esta problemática diseñamos, implementamos y evaluamos la unidad didáctica de razones trigonométricas como propuesta de innovación en la Institución de Educación Distrital (IED) José Joaquín Castro Martínez. Esta unidad didáctica promueve la construcción del concepto razones trigonométricas a partir de situaciones que tienen sentido para el estudiante y que son cercanas a su propio contexto.
Resumo:
El actual currículo de matemáticas de la educación secundaria da gran importancia a procesos de razonamiento tales como la generalización. La investigación en Educación Matemática viene estudiando el modo en que se desarrollan estos procesos a través de distintos contenidos matemáti- cos. El tipo de representación que los estudiantes utilizan para expresar su razonamiento también es objeto de estudio ya que influye de manera decisiva en sus posibilidades para alcanzar la generalización. En el trabajo que se presenta a continuación, se analizan diferentes formas de expresar la generalización que utilizan estudiantes de secundaria cuando resuelven problemas que involucran sucesiones lineales y cuadráticas. Los autores han realizado un estudio en el que han participado 359 estudiantes de se- cundaria. Identifican la representación gráfica como una herramienta útil para lograr la generalización y analizan su conexión con otras formas de representación.
Resumo:
Se presentan dos investigaciones que se están desarrollando y que surgen del interés por hacer más accesible el álgebra escolar a los estudiantes. Se describen los objetivos de investigación, el método, el análisis de datos, los resultados más relevantes y las conclusiones de cada una de las investigaciones. Se destacan las implicaciones que pueden tener para la docencia en los niveles educativos en los que se lleva a cabo (educación secundaria y educación primaria, respectivamente).
Resumo:
El análisis de actuación corresponde al cuarto y último de los análisis que componen el análisis didáctico. Con él se cierra un ciclo de análisis y se enlaza con el comienzo de un nuevo ciclo. El interés de este módulo se centra en la planificación del seguimiento del aprendizaje de los escolares y del propio proceso de enseñanza durante la implementación de lo planificado en el análisis de instrucción, con objeto de comparar las previsiones que han hecho en dicha planificación con lo que sucederá cuando ésta se lleve a cabo en el aula. Esta comparación redundará en ajustes puntuales de la planificación durante el mismo proceso de instrucción, así en como reformulaciones globales, de cara a un nuevo ciclo de análisis didáctico.
Resumo:
Se presenta un avance de una investigación de tipo cualitativo en la cual se busca identificar las características de razonamiento presentadas en estudiantes de grado quinto al momento de enfrentarse a situaciones de tipo variacional; dichas características se discuten a la luz del marco conceptual para la covariación propuesto por Carlson, Jacobs, Coe, Larsen, y Hsu (2003). Desde las situaciones, se desprenden algunas implicaciones y recomendaciones para su implementación en el aula de clase, específicamente para un acercamiento a nociones como: función y tasa de variación, las cuales se encuentran en las bases propias del razonamiento covariacional y pueden abordarse desde los primeros grados de escolaridad como una manera de crear cimientos en la comprensión de los conceptos más relevantes del cálculo.
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
Este trabajo está orientado al estudio de las representaciones gráficas de funciones a fin de construir un módulo para docentes que contenga actividades estratégicamente diseñadas en cuanto a metodología y didáctica, de tal forma que los educandos puedan construir los conceptos de forma correcta, siendo conscientes que en el fondo hay un gran objeto matemático, con un enorme campo de aplicación: la función. Para ello, se desarrolla el trabajo de campo en la institución educativa Conrado González Mejía, la cual está ubicada en el barrio Robledo de la ciudad de Medellín.
Resumo:
En el presente documento reportamos parte de los resultados obtenidos de una investigación que centró su atención en el estudio de algunos tópicos de la trigonometría plana presente en los libros de texto de matemáticas de la educación media (15-18 años). En particular, nos propusimos interpretar la manera en que los libros de texto de matemáticas ponen de relieve los aspectos variacionales en estos tópicos. A través de la técnica del análisis de contenido pudimos observar que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular “datos fijos y desconocidos” de un triángulo; los resultados del estudio muestran que la necesidad de diseñar propuestas alternativas, en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.
Resumo:
Presentó en este encuentro algunos resultados de la investigación “La objetivación del concepto de parábola desde el uso de artefactos”. Estos resultados nos muestran cómo los artefactos son constituyentes en el proceso de objetivación del concepto de parábola. Para ello, explicitamos, en una primera parte, la importancia que desde la Teoría de la Actividad se le ha dado al carácter mediatizado del pensamiento; seguidamente mostramos, a partir de los diferentes episodios, cómo los artefactos culturales, en el sentido de Radford (2008) se convierten en constituyentes en el proceso de objetivación del concepto de parábola. Así, consideramos que la manera como un sujeto llega a pensar y a conocer un objeto depende de los significados culturales producidos, de las interpretaciones propias, de las formas de acercase al objeto, por medio de la actividad misma y siempre mediada por artefactos.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Resumo:
La presente ponencia resume el inicio de la construcción de un laboratorio de física y matemáticas en el programa de la Licenciatura en Matemáticas y Tecnologías de la Información, de la Universidad La Gran Colombia. Se presenta la experiencia en el diseño de la primera actividad y de los constructos teóricos y prácticos que se tuvieron en cuenta. Esta experiencia de aula está avalada dentro de la conformación de un semillero de investigación de la facultad, y muestra cómo a partir de un sistema masaresorte se pueden construir algunos conceptos fundamentales como el período de funciones, el comportamiento de las mismas y destacar la importancia del modelado de datos para su respectivo análisis y obtener así una aproximación por medio de la matemática.