28 resultados para EMBARGO
Resumo:
La Formación del Profesorado de matemáticas de Secundaria se encuentra actualmente en España sometida a una profunda revisión, no exenta de debate. El avance social, cultural, científico y económico acelerado de la sociedad española en los últimos años han rebasado ampliamente el marco de la formación del profesorado de Secundaria, diseñado hace más de un siglo. Sin embargo, los hábitos académicos e intereses particulares suponen una fuerte inercia para considerar al educador matemático como profesional autónomo. Los Profesores del Area de Didáctica de la Matemática y las Sociedades Españolas de profesores de matemáticas han debatido este tema y han aportado nuevas orientaciones. La Universidad Española debe abordar la formación inicial del Profesorado de Matemáticas en un nuevo marco y, para ello, deben tomarse decisiones adecuadas.
Resumo:
Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.
Resumo:
La investigación educativa nos proporciona conocimiento basado científicamente acerca del proceso de aprendizaje por parte de los estudiantes, así como de las dificultades y errores más comunes entre ellos. Sin embargo, este conocimiento no siempre se pone a disposición de los profesores directamente implicados en la enseñanza en las aulas, de manera que no se aplica ni se aprovecha debidamente. En este trabajo, pretendemos ofrecer a los profesores algunos resultados obtenidos de la investigación en el campo de la didáctica de la estadística, con el fin de contribuir a facilitar y mejorar su práctica docente. Si bien los resultados que se presentan se han obtenido en el contexto español, los hallazgos son lo suficientemente generales como para que puedan ser utilizados por profesores de otros contextos.
Resumo:
Sobre la base de dos casos de modelos matemáticos aplicados a problemas auténticos, sugeriré algunas consecuencias de usar las matemáticas. Para ver si las reflexiones sobre estos asuntos se pueden introducir en el aula observé algunos cursos de modelado en escuelas danesas de educación superior. Encontré que las reflexiones eran realizadas en unas pocas circunstancias aisladas, y que generalmente estaban separadas de la actividad de modelaje de los estudiantes. Sin embargo, observé algunas diferencias interesantes entre dos de los cursos. En uno, las experiencias a partir del modelaje estaban en alguna medida influyendo las reflexiones que los estudiantes adelantaban. En el otro, las reflexiones sobre modelos eran claramente opuestas tanto al modelaje como a la actividad matemática de los estudiantes -opuesta en contenido lo mismo que como tipo de discurso.
Resumo:
Desde distintos planteamientos las investigaciones han proporcionado información sobre las características de la comprensión del concepto de derivada en los estudiantes. Sin embargo, falta más información sistemática sobre indicadores que ayuden a describir el desarrollo de la comprensión de dicho concepto. En este trabajo, desde la teoría piagetiana del desarrollo de un esquema a través de los niveles intra, inter, trans, caracterizamos una evidencia empírica de cómo el uso que se hace de las “relaciones lógicas” entre diferentes elementos matemáticos del concepto derivada por parte de los estudiantes cuando resuelven un problema, aporta información para explicar el fenómeno de paso de un nivel de desarrollo del esquema derivada al siguiente.
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.
Resumo:
Esta investigación presenta la puesta en práctica de una propuesta pedagógica para apoyar la enseñanza del Cálculo mediante la resolución de problemas a nivel preuniversitarioen Costa Rica. El proyecto tiene su origen en las dificultades que presentan los estudiantes en la comprensión de conceptos básicos de Cálculo, específicamente el de límite y derivada. Esta experiencia se fundamentó en la elaboración de una “situación problema” que provocó un conflicto intelectual en los estudiantes, mientras que el docente fungió como mediador y aprovechó los descubrimientos hechos por los estudiantes para fundamentar teóricamente los diferentes conceptos luego de la aplicación de la propuesta. Los resultados obtenidos son muy positivos y justifican la necesidad de un cambio en las estrategias metodologías utilizadas para enseñar el Cálculo. Sin embargo, es necesario un acercamiento de los docentes hacia la Teoría de Resolución de problemas para aplicar con éxito este tipo de actividades.
Resumo:
En las prácticas de enseñanza es común factorizar polinomios usando un conjunto de reglas para manipular expresiones algebraicas con lápiz/ papel. Esto lleva a encasillar a la factorización a una sola representación matemática, la algebraica, y a un proceso matemático, la formulación, comparación y ejercitación de procedimientos. Por lo que el tiempo de trabajo requerido por un estudiante para expresar un polinomio en su forma factorizada con lápiz/papel no sea corto. Lo anterior puede incidir en las escasas conexiones que se dan entre la factorización y otros conceptos. Sin embargo, la integración de calculadoras simbólicas podría dar paso a mirar cómo lograr otras situaciones de enseñanza que fortalezcan las conexiones de la factorización con otros conceptos, como los ceros de un polinomio.
Resumo:
Este documento permite vislumbrar, atendiendo a las actuales normativas legales, la inclusión educativa en Colombia, teniendo en cuenta la aplicación de una secuencia de actividades; sin embargo, también reconoce la importancia los mecanismos que permiten que esto sea real, entre ellas tenemos para la población con discapacidad visual la adaptación de material. Todo esto en el marco del quehacer docente en el aula de matemáticas.
Resumo:
Parece mentira que viviendo los terrícolas en una esfera (bueno, casi), sin embargo, me conozcan tan poco. Aquí se realiza un estudio a la esfera.
Resumo:
El trabajo que se presenta corresponde a un análisis comparativo, respecto de la inserción de las TIC en el proceso de formación en la macro región sur-austral chilena, el estudio se orienta bajo un análisis de carácter cualitativo en el que se verifican aspectos tales como infraestructura, capacitación de profesores, aplicaciones en matemáticas, entre otros. Los resultados muestran que la inserción de las TIC en el medio educativo de la región se ha incrementado levemente, sin embargo, aún es insipiente la inserción de estas en el trabajo de los alumnos en el aula, la falta de perfeccionamiento de los profesores y la ausencia en la malla curricular de una asignatura exclusiva de informática para los estudiantes. Respecto a la aplicación de las TICs, los profesores de Matemática señalan aplicarlas en un 60%, en sus procedimientos didácticos, mientras que los alumnos(as), señalan que ello ocurre en un 16%, siendo uno de los software más utilizado en matemática por profesores y alumnos el Gaphmatic, seguido por el Derive, aunque el uso de estas herramientas debiese aumentar. Este estudio ha dejado de manifiesto una mejora en la inserción de las TICs en educación y en especial en educación matemática, observándose un mayor avance en los establecimientos educacionales de dependencia particular.
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.
Resumo:
El estudio de procesos de aprendizaje en el “aula tradicional” tiene que cambiar si queremos evidenciar otras formas de construcción del conocimiento matemático, por ello es necesario considerar otros escenarios donde la matemática no es objeto de estudio pero que sin embargo el conocimiento matemático subyace. Un ejemplo de esto es el conocimiento cotidiano en un escenario de difusión, característico de ideas, intuiciones o sentido común donde subyace una matemática. Con lo anterior se hace un estudio bajo la teoría socioepistemológica, tratando de caracterizar este conocimiento hacia su uso mediante ideas variacionales con tecnología. Con el estudio del uso del conocimiento, se intenta desarrollar un pensamiento variacional característico del escenario a través del constructo “uso de la gráfica”, donde además se intenta encontrar alguna evidencia de nociones de integración tecnológica al conocimiento del participante.
Resumo:
Lo periódico en la relación de una función y sus derivadas, en un contexto analítico queda en demostrar la veracidad de la proposición f periódica f´periódica usando las definiciones de derivada y de función periódica; sin embargo al trabajar en un contexto gráfico, podemos hacer evidente que el comportamiento de una función tiene dos componentes: el comportamiento en el eje X y otro en el eje Y; esta distinción es fundamental para distinguir entre algo periódico y algo que no lo es; al explorar dicha relación usando movimientos hemos encontrado movimientos que no son periódicos y cuya velocidad sí lo sería. En este trabajo reportamos algunas dificultades al enfrentarnos con esta relación en escenarios periódicos en los contextos analíticos gráficos y físicos.