987 resultados para Learning Landscapes

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project has blended two streams of enquiry: temporary and transportable construction technology, and flexible blended-learning environments. It seeks to develop prototypes for a series of environments suited for the activities of learning (future-proofed schools), as practiced in the twenty first century. The research utilises techniques of: historic survey, case study, first-hand observation, and architectural design (as research). The design comprises three major components: The determinate landscape: in-situ concrete ‘plate’ that is permanent. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context; manufactured to the principles of design-for-disassembly. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. This project was submitted to the ‘Future Proofing Schools’ competition (professional category) in October 2011. The competition was part of a research project supported under the Australian Research Council’s Linkage Grant funding scheme (project LP0991146).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty first century learners operate in organic, immersive environments. A pedagogy of student-centred learning is not a recipe for rooms. A contemporary learning environment is like a landscape that grows, morphs, and responds to the pressures of the context and micro-culture. There is no single adaptable solution, nor a suite of off-the-shelf answers; propositions must be customisable and infinitely variable. They must be indeterminate and changeable; based on the creation of learning places, not restrictive or constraining spaces. A sustainable solution will be un-fixed, responsive to the life cycle of the components and materials, able to be manipulated by the users; it will create and construct its own history. Learning occurs as formal education with situational knowledge structures, but also as informal learning, active learning, blended learning social learning, incidental learning, and unintended learning. These are not spatial concepts but socio-cultural patterns of discovery. Individual learning requirements must run free and need to be accommodated as the learner sees fit. The spatial solution must accommodate and enable a full array of learning situations. It is a system not an object. Three major components: 1. The determinate landscape: in-situ concrete 'plate' that is permanent. It predates the other components of the system and remains as a remnant/imprint/fossil after the other components of the system have been relocated. It is a functional learning landscape in its own right; enabling a variety of experiences and activities. 2. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context. Manufactured to the principles of design-for-disassembly. A symbiotic barnacle like system that attaches itself to the existing infrastructure through the determinate landscape which acts as a fast growth rhizome. A carapace of protective panels, infinitely variable to create enclosed, semi-enclosed, and open learning places. 3. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. Four main types of stations; wet-room learning centres, dry-room learning centres, ablutions, and low-impact building services. Entirely customised at the factory and delivered to site. The stations can be retro-fitted to suit a new context during relocation. Principles of design for disassembly: material principles • use recycled and recyclable materials • minimise the number of types of materials • no toxic materials • use lightweight materials • avoid secondary finishes • provide identification of material types component principles • minimise/standardise the number of types of components • use mechanical not chemical connections • design for use of common tools and equipment • provide easy access to all components • make component size to suite means of handling • provide built in means of handling • design to realistic tolerances • use a minimum number of connectors and a minimum number of types system principles • design for durability and repeated use • use prefabrication and mass production • provide spare components on site • sustain all assembly and material information

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation Structure: - THEORY - CASE STUDY 1: Southbank Institute of Technology - CASE STUDY 2: QUT Science and Technology Precinct - MORE IDEAS - ACTIVITY

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates learning environments from the view of the key users - students. Recent literature on designing Learning Landscapes indicates a near absence of the student voice, assuming that the majority of students are either uninterested or unable to express what they want or need, in a learning environment. The focus of this research is to reveal Architecture and Fashion Design students’ perceptions of their learning environments. Furthermore, this study questions the appropriateness of usual design of learning spaces for Design students, or if the environment needs to be specifically catered for the learning of different disciplines of Design, such as Architecture and Fashion Design. Senior Architecture and Fashion Design students were invited to participate in a qualitative mixed method study, including investigation into existing literature, questionnaires, focus groups and spontaneous participatory research. Through the analysis of data it was found that students’ perceptions validate discipline specific learning environments and contribute towards the development of a framework for the design of future Learning Landscapes, for Design education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been nearly 25 years since the problems associated with passive learning in large undergraduate classes were first established by McDermott (1991). STEM education, for example North Carolina State University’s SCALE-UP project, has subsequently been influenced by some unique aspects of design studio education. While there are now many institutions applying SCALE-UP or similar approaches to enable lively interaction, enhanced learning, increased student engagement, and to teach many different content areas to classes of all sizes, nearly all of these have remained in the STEM fields (Beichner, 2008). Architectural education, although originally at the forefront of this field, has arguably been left behind. Architectural practice is undergoing significant change, globally. Access to new technology and the development of specialised architectural documentation software has scaffolded new building procurement methods and allowed consultant teams to work more collaboratively, efficiently and even across different time zones. Up until recently, the spatial arrangements, pedagogical approaches, and project work outcomes in the architectural design studio, have not been dissimilar to its inception. It is not possible to keep operating architectural design studios the same way that they have for the past two hundred years, with this new injection of high-end technology and personal mobile Wi-Fi enabled devices. Employing a grounded theory methodology, this study reviews the current provision of architectural design learning terrains across a range of tertiary institutions, in Australia. Some suggestions are provided for how these spaces could be modified to address the changing nature of the profession, and implications for how these changes may impact the design of future SCALE-UP type spaces outside of the discipline of architecture, are also explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversification and expansion of global higher education in the 21st century, has resulted in Learning Landscapes for architectural education that can no longer be sustained by the traditional model. Changes have resulted because of surging student numbers, extensions to traditional curricula, evolving competency standards and accreditation requirements, and modified geographical and pedagogical boundaries. The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place. Pressures on government funded higher education budgets highlight the need for a critical review of the current approach to the design and use of learning environments. Efficient design of physical space contributes significantly to savings in provision, management and use of facilities, while also potentially improving pedagogical quality. The purpose of this research is to identify emerging trends in the design of future Learning Landscapes for architectural education in Australasia; to understand where and how students of architecture are likely to learn, in the future context. It explores the important linkages between space, place, pedagogy, technology and context, using a multi methodological qualitative research approach. An Australasian context study will explore the Learning Landscapes of 23 Schools of Architecture across Australia, New Zealand and Papua New Guinea. The focus of this paper is on the methodology which is being employed to undertake dynamic data collection for the study. The research will be determined through mapping all forms of architectural learning environments, pedagogical approaches and contextual issues, to bridge the gap between academic theory, and architectural design practice. An initial understanding that pedagogy is an intrinsic component imbedded within the design of learning environments, will play an important role. Active learning environments which are exemplified by the architectural design studio, support dynamic project based and collaborative connected learning models. These have recently become a lot more common in disciplines outside of design and the arts. It is anticipated, therefore, that the implications for this research may well have a positive impact far beyond the confines of the architectural studio learning environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

“Our students have changed radically. Today’s students are no longer the people our educational system was designed to teach” (Prensky, 2001, p. 1). The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place, and changing perceptions of traditional learning landscapes (JISC, 2006; Neary et al., 2010). Mobile computers combined with wireless technology, have completely transformed the educational world; students have turned nomad[ic], engaging in conversations and thinking across traditional campus spaces (Alexander, 2004; Fisher, 2005). In this workshop we will be attempting to de-mystify a facet of mobile learning, by working in small groups to set up and kick start a number of social media sites, which can be used for collaboration and information exchange, in the design studio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With internationalisation and globalisation, English has proliferated in urban spaces around the world. This creates new opportunities for EFL learning and teaching. An English literacy walk is one activity that can be used productively to capitalise on this potential. The activity has roots in: (i) long-established approaches to emergent literacy education for young children; and (ii) pedagogic projects inspired by recent research on linguistic landscapes. Drawing on these traditions, teachers can target reading outcomes involving code, semantic, pragmatic and critical knowledge and skills. We use the four resources model of literate practices to systematically map some of the potential of literacy walks in multilingual, multimodal linguistic landscapes. We suggest tasks and teacher questions that might be used for purposes of explicit teaching of reading during and after literacy walks. Although grounded in Taipei, our ideas might be of interest to EFL teachers in other globalised cities around the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"The extended drought periods in each degradation episode have provided a test of the capacity of grazing systems (i.e. land, plants, animals, humans and social structure) to handle stress. Evidence that degradation was already occurring was identified prior to the extended drought sequences. The sequence of dry years, ranging from two to eight years, exposed and/or amplified the degradation processes. The unequivocal evidence was provided by: (a) the physical 'horror' of bare landscapes, erosion scalds and gullies and dust storms; (b) the biological devastation of woody weeds and animal suffering/deaths or forced sales, and; (c) the financial and emotional plight of graziers and their families due to reduced production in some cases leading to abandonment of properties or, sadly, deaths (e.g. McDonald 1991, Ker Conway 1989)."--Publisher website