194 resultados para Cooperative game
Resumo:
We have always felt that “something very special” was happening in the 48hr and other similar game jams. This “something” is more than the intensity and challenge of the experience, although this certainly has appeal for the participants. We had an intuition that these intense 48 hour game jams exposed something pertinent to the changing shape of the Australian games industry where we see the demise of the late 20th century large studio - the “Night Elf” model and the growth of the small independent model. There are a large number of wider economic and cultural factors around this evolution but our interest is specifically in the change from “industry” to “creative industry” and the growth of games as a cultural media and art practice. If we are correct in our intuition, then illuminating this something also has important ramifications for those courses which teach game and interaction design and development. Rather than undertake a formal ethno-methodological approach, we decided to track as many of the actors in the event as possible. We documented the experience (Keith Novak’s beautiful B&W photography), the individual and their technology (IOGraph mouse tracking), the teams as a group (Time lapse photography) and movement tracking throughout the whole space (Blue tooth phone tracking). The raw data collected has given us opportunity to start a commentary on the “something special” happening in the 48hr.
Resumo:
This paper presents a feasible spatial collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
A Cooperative Collision Warning System (CCWS) is an active safety techno- logy for road vehicles that can potentially reduce traffic accidents. It provides a driver with situational awareness and early warnings of any possible colli- sions through an on-board unit. CCWS is still under active research, and one of the important technical problems is safety message dissemination. Safety messages are disseminated in a high-speed mobile environment using wireless communication technology such as Dedicated Short Range Communication (DSRC). The wireless communication in CCWS has a limited bandwidth and can become unreliable when used inefficiently, particularly given the dynamic nature of road traffic conditions. Unreliable communication may significantly reduce the performance of CCWS in preventing collisions. There are two types of safety messages: Routine Safety Messages (RSMs) and Event Safety Messages (ESMs). An RSM contains the up-to-date state of a vehicle, and it must be disseminated repeatedly to its neighbouring vehicles. An ESM is a warning message that must be sent to all the endangered vehi- cles. Existing RSM and ESM dissemination schemes are inefficient, unscalable, and unable to give priority to vehicles in the most danger. Thus, this study investigates more efficient and scalable RSM and ESM dissemination schemes that can make use of the context information generated from a particular traffic scenario. Therefore, this study tackles three technical research prob- lems, vehicular traffic scenario modelling and context information generation, context-aware RSM dissemination, and context-aware ESM dissemination. The most relevant context information in CCWS is the information about possible collisions among vehicles given a current vehicular traffic situation. To generate the context information, this study investigates techniques to model interactions among multiple vehicles based on their up-to-date motion state obtained via RSM. To date, there is no existing model that can represent interactions among multiple vehicles in a speciffic region and at a particular time. The major outcome from the first problem is a new interaction graph model that can be used to easily identify the endangered vehicles and their danger severity. By identifying the endangered vehicles, RSM and ESM dis- semination can be optimised while improving safety at the same time. The new model enables the development of context-aware RSM and ESM dissemination schemes. To disseminate RSM efficiently, this study investigates a context-aware dis- semination scheme that can optimise the RSM dissemination rate to improve safety in various vehicle densities. The major outcome from the second problem is a context-aware RSM dissemination protocol. The context-aware protocol can adaptively adjust the dissemination rate based on an estimated channel load and danger severity of vehicle interactions given by the interaction graph model. Unlike existing RSM dissemination schemes, the proposed adaptive scheme can reduce channel congestion and improve safety by prioritising ve- hicles that are most likely to crash with other vehicles. The proposed RSM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed RSM protocol outperforms existing pro- tocols in terms of efficiency, scalability and safety. To disseminate ESM efficiently, this study investigates a context-aware ESM dissemination scheme that can reduce unnecessary transmissions and deliver ESMs to endangered vehicles as fast as possible. The major outcome from the third problem is a context-aware ESM dissemination protocol that uses a multicast routing strategy. Existing ESM protocols use broadcast rout- ing, which is not efficient because ESMs may be sent to a large number of ve- hicles in the area. Using multicast routing improves efficiency because ESMs are sent only to the endangered vehicles. The endangered vehicles can be identified using the interaction graph model. The proposed ESM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed ESM protocol can prevent potential accidents from occurring better than existing ESM protocols. The context model and the RSM and ESM dissemination protocols can be implemented in any CCWS development to improve the communication and safety performance of CCWS. In effect, the outcomes contribute to the realisation of CCWS that will ultimately improve road safety and save lives.
Resumo:
We report and reflect upon the early stages of a research project that endeavours to establish a culture of critical design thinking in a tertiary game design course. We first discuss the current state of the Australian game industry and consider some perceived issues in game design courses and graduate outcomes. The second sec-tion presents our response to these issues: a project in progress which uses techniques originally exploited by Augusto Boal in his work, Theatre of the Oppressed. We appropriate Boal’s method to promote critical design thinking in a games design class. Finally, we reflect on the project and the ontology of design thinking from the perspective of Bruce Archer’s call to reframe design as a ‘third academic art’.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
This paper presents Secret SLQ, a pervasive mobile game that aims to encourage eight to fourteen year olds to engage with the State Library of Queensland. The game sets out to encourage people to visit and explore the library, as well as educate a generation of young people and parents who may visit the library but have no idea of the treasures that it holds. The research explores how smartphone technology can be used to deliver an engaging and educational experience. The game aims to provide a fun and interactive way to guide participants through a multi-leveled library building, to search for unique QR codes to unlock clues, answer quiz questions and progress further up a leaderboard. This paper outlines the design and initial deployment of the game, reporting on results from a usability study and discussing initial observations made by librarians. Findings indicate that the mobile platform is suitable for delivering such experiences but consideration is needed when embedding games in such large environments so as not to confuse players as they play.
Resumo:
A sub optimal resource allocation algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cooperative scheme is proposed. The system consists of multiple relays. Subcarrier space is divided into blocks and relays participating in cooperation are allocated specific blocks to be used with a user. To ensure unique subcarrier assignment system is constrained such that same block cannot be used by more than one user. Users are given fair block assignments while no restriction for maximum number of blocks a relay can employ is given. Forced cost based decisions [1] are used for block allocation. Simulation results show that this scheme outperforms a non cooperating scheme with sequential allocation with respect to power usage.
Resumo:
Young drivers aged 17-24 years are at a risk of death and injury from road crashes primarily due to their age and inexperience on the road. Our research aims to investigate if a gamified mobile tracking and intervention tool can help to address this issue. We aim to build a smartphone application to support the current process of logging driving hours using a physical logbook and pen in Queensland. This provides an easier way to log driving hours than recording them in a logbook. In an attempt to engage Learners and encourage them to undertake more diverse driving practice we will explore how game elements can be integrated into the experience to motivate Learners. Previous research in other domains has shown that framing tasks as game-like can help engage and motivate users, however the addition of game elements to this space provides some interesting design challenges. This paper presents an overview of the research and presents these challenges for further discussion.
Resumo:
We consider a joint relay selection and subcarrier allocation problem that minimizes the total system power for a multi-user, multi-relay and single source cooperative OFDM based two hop system. The system is constrained to all users having a specific subcarrier requirement (user fairness). However no specific fairness constraints for relays are considered. To ensure the optimum power allocation, the subcarriers in two hops are paired with each other. We obtain an optimal subcarrier allocation for the single user case using a similar method to what is described in [1] and modify the algorithm for multiuser scenario. Although the optimality is not achieved in multiuser case the probability of all users being served fairly is improved significantly with a relatively low cost trade off.