642 resultados para Agricultural Engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research assessed how best to transition engineering-based automotive firms towards more customer-orientated design and development approaches, whilst identifying the main barriers and concerns facing such a shift. The research investigates the ability of a firm to empower individual engineers with user centred design tools traditionally used by designers, whilst understanding the company-wide needs to facilitate their implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the socio-economic impact of mineral and agricultural resource extraction on local communities and explores policy options for addressing them. An emphasis on the marketisation of services together with tight fiscal control has reinforced decline in many country communities in Australia and elsewhere. However, the introduction by the European Union of Regional Policy which emphasises ‘smart specialisation’ can enhance greatly the capacity of local people to generate decent livelihoods. For this to have real effect, the innovative state has to enable partnerships between communities, researchers and industry. For countries like Australia, this would be a substantive policy shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Complexity’ is a term that is increasingly prevalent in conversations about building capacity for 21st Century professional engineers. Society is grappling with the urgent and challenging reality of accommodating seven billion people, meeting needs and innovating lifestyle improvements in ways that do not destroy atmospheric, biological and oceanic systems critical to life. Over the last two decades in particular, engineering educators have been active in attempting to build capacity amongst professionals to deliver ‘sustainable development’ in this rapidly changing global context. However curriculum literature clearly points to a lack of significant progress, with efforts best described as ad hoc and highly varied. Given the limited timeframes for action to curb environmental degradation proposed by scientists and intergovernmental agencies, the authors of this paper propose it is imperative that curriculum renewal towards education for sustainable development proceeds rapidly, systemically, and in a transformational manner. Within this context, the paper discusses the need to consider a multiple track approach to building capacity for 21st Century engineering, including priorities and timeframes for undergraduate and postgraduate curriculum renewal. The paper begins with a contextual discussion of the term complexity and how it relates to life in the 21st Century. The authors then present a whole of system approach for planning and implementing rapid curriculum renewal that addresses the critical roles of several generations of engineering professionals over the next three decades. The paper concludes with observations regarding engaging with this approach in the context of emerging accreditation requirements and existing curriculum renewal frameworks.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Th is landmark report on engineering and development is the fi rst of its kind to be produced by UNESCO, or indeed by any international organization. Containing highly informative and insightful contributions from 120 experts from all over the world, the report gives a new perspective on the very great importance of the engineer’s role in development. Advances in engineering have been central to human progress ever since the invention of the wheel. In the past hundred and fi fty years in particular, engineering and technology have transformed the world we live in, contributing to signifi cantly longer life expectancy and enhanced quality of life for large numbers of the world’s population. Yet improved healthcare, housing, nutrition, transport, communications, and the many other benefi ts engineering brings are distributed unevenly throughout the world. Millions of people do not have clean drinking water and proper sanitation, they do not have access to a medical centre, they may travel many miles on foot along unmade tracks every day to get to work or school...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher education institutions have made some progress towards Engineering Education for Sustainable Development (EESD). There is however a ‘time lag dilemma’ facing engineering educators, where the pace of traditional curriculum renewal may not be sufficient to keep up with potential market,regulatory and institutional shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging 21st century challenges require higher education institutions (HEIs) to play a key role in developing graduates and professionals, particularly in engineering and design, who can forge sustainable solutions. The trouble is there’s currently a significant lag in the preparedness of HEIs to provide the stream of professionals needed. Addressing energy efficiency competencies is one critical area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reflects on the critical need for an urgent transformation of higher education curriculum globally, to equip society with professionals who can address our 21st Century sustainable living challenges. Specifically it discusses a toolkit called the ‘Engineering Sustainable Solutions Program’, which is a freely available, rigorously reviewed and robust content resource for higher education institutions to access content on innovations and opportunities in the process of evolving the curriculum...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian rural landscapes are facing a crisis from land degradation due to rising salinity levels, soil acidification and soil erosion. There is growing consensus amongst the businesses community, government departments and research organisations that the real solution to these problems and the broader sustainability dilemma comes by taking a ‘whole of system’ approach to agricultural and rangelands management. This article introduces two cutting-edge concepts – Biomimicry and Natural Sequence Farming – to illustrate how whole-system thinking can effectively and profitably address the challenges facing agriculture and rangelands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper asks the question to what scale and speed does society need to reduce its ecological footprint and improve resource productivity to prevent further overshoot and return within the ecological limits of the earth’s ecological life support systems? How fast do these changes need to be achieved? The paper shows that now a large range of studies find that engineering sustainable solutions need to be roughly an order or magnitude resource productivity improvement (sometimes called a Factor of 10, or a 90% reduction) by 2050 to achieve real and lasting ecological sustainability. This marks a significant challenge for engineers – indeed all designers and architects, where best practice in engineering sustainable solutions will need to achieve large resource productivity targets. The paper brings together examples of best practice in achieving these large targets from around the world. The paper also highlights key resources and texts for engineers who wish to learn how to do it. But engineers need to be realistic and patient. Significant barriers exist to achieving Factor 4-10 such as the fact that infrastructure and technology rollover and replacement is often slow. This slow rollover of the built environment and technology is the context within which most engineers work, making the goal of achieving Factor 10 all the more challenging. However, the paper demonstrates that by using best practice in engineering sustainable solutions and by addressing the necessary market, information and institutional failures it is possible to achieve Factor 10 over the next 50 years. This paper draws on recent publications by The Natural Edge Project (TNEP) and partners, including Hargroves, K. Smith, M. (Eds) (2005) The Natural Advantage of Nations: Business Opportunities, Innovation and Governance for the 21st Century, and the TNEP Engineering Sustainable Solutions Program - Critical Literacies for Engineers Portfolio. Both projects have the significant support of Engineers Australia. its College of Environmental Engineers and the Society of Sustainability and Environmental Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.