478 resultados para Intakes (Hydraulic engineering)
Resumo:
Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
The research assessed how best to transition engineering-based automotive firms towards more customer-orientated design and development approaches, whilst identifying the main barriers and concerns facing such a shift. The research investigates the ability of a firm to empower individual engineers with user centred design tools traditionally used by designers, whilst understanding the company-wide needs to facilitate their implementation.
Resumo:
The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.
Resumo:
A large range of underground mining equipment makes use of compliant hydraulic arms for tasks such as rock-bolting, rock breaking, explosive charging and shotcreting. This paper describes a laboratory model electo-hydraulic manipulator which is used to prototype novel control and sensing techniques. The research is aimed at improving the safety and productivity of these mining tasks through automation, in particular the application of closed-loop visual positioning of the machine's end-effector.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
‘Complexity’ is a term that is increasingly prevalent in conversations about building capacity for 21st Century professional engineers. Society is grappling with the urgent and challenging reality of accommodating seven billion people, meeting needs and innovating lifestyle improvements in ways that do not destroy atmospheric, biological and oceanic systems critical to life. Over the last two decades in particular, engineering educators have been active in attempting to build capacity amongst professionals to deliver ‘sustainable development’ in this rapidly changing global context. However curriculum literature clearly points to a lack of significant progress, with efforts best described as ad hoc and highly varied. Given the limited timeframes for action to curb environmental degradation proposed by scientists and intergovernmental agencies, the authors of this paper propose it is imperative that curriculum renewal towards education for sustainable development proceeds rapidly, systemically, and in a transformational manner. Within this context, the paper discusses the need to consider a multiple track approach to building capacity for 21st Century engineering, including priorities and timeframes for undergraduate and postgraduate curriculum renewal. The paper begins with a contextual discussion of the term complexity and how it relates to life in the 21st Century. The authors then present a whole of system approach for planning and implementing rapid curriculum renewal that addresses the critical roles of several generations of engineering professionals over the next three decades. The paper concludes with observations regarding engaging with this approach in the context of emerging accreditation requirements and existing curriculum renewal frameworks.
Resumo:
Th is landmark report on engineering and development is the fi rst of its kind to be produced by UNESCO, or indeed by any international organization. Containing highly informative and insightful contributions from 120 experts from all over the world, the report gives a new perspective on the very great importance of the engineer’s role in development. Advances in engineering have been central to human progress ever since the invention of the wheel. In the past hundred and fi fty years in particular, engineering and technology have transformed the world we live in, contributing to signifi cantly longer life expectancy and enhanced quality of life for large numbers of the world’s population. Yet improved healthcare, housing, nutrition, transport, communications, and the many other benefi ts engineering brings are distributed unevenly throughout the world. Millions of people do not have clean drinking water and proper sanitation, they do not have access to a medical centre, they may travel many miles on foot along unmade tracks every day to get to work or school...
Resumo:
Higher education institutions have made some progress towards Engineering Education for Sustainable Development (EESD). There is however a ‘time lag dilemma’ facing engineering educators, where the pace of traditional curriculum renewal may not be sufficient to keep up with potential market,regulatory and institutional shifts.
Resumo:
Emerging 21st century challenges require higher education institutions (HEIs) to play a key role in developing graduates and professionals, particularly in engineering and design, who can forge sustainable solutions. The trouble is there’s currently a significant lag in the preparedness of HEIs to provide the stream of professionals needed. Addressing energy efficiency competencies is one critical area.
Resumo:
This paper reflects on the critical need for an urgent transformation of higher education curriculum globally, to equip society with professionals who can address our 21st Century sustainable living challenges. Specifically it discusses a toolkit called the ‘Engineering Sustainable Solutions Program’, which is a freely available, rigorously reviewed and robust content resource for higher education institutions to access content on innovations and opportunities in the process of evolving the curriculum...
Resumo:
This paper asks the question to what scale and speed does society need to reduce its ecological footprint and improve resource productivity to prevent further overshoot and return within the ecological limits of the earth’s ecological life support systems? How fast do these changes need to be achieved? The paper shows that now a large range of studies find that engineering sustainable solutions need to be roughly an order or magnitude resource productivity improvement (sometimes called a Factor of 10, or a 90% reduction) by 2050 to achieve real and lasting ecological sustainability. This marks a significant challenge for engineers – indeed all designers and architects, where best practice in engineering sustainable solutions will need to achieve large resource productivity targets. The paper brings together examples of best practice in achieving these large targets from around the world. The paper also highlights key resources and texts for engineers who wish to learn how to do it. But engineers need to be realistic and patient. Significant barriers exist to achieving Factor 4-10 such as the fact that infrastructure and technology rollover and replacement is often slow. This slow rollover of the built environment and technology is the context within which most engineers work, making the goal of achieving Factor 10 all the more challenging. However, the paper demonstrates that by using best practice in engineering sustainable solutions and by addressing the necessary market, information and institutional failures it is possible to achieve Factor 10 over the next 50 years. This paper draws on recent publications by The Natural Edge Project (TNEP) and partners, including Hargroves, K. Smith, M. (Eds) (2005) The Natural Advantage of Nations: Business Opportunities, Innovation and Governance for the 21st Century, and the TNEP Engineering Sustainable Solutions Program - Critical Literacies for Engineers Portfolio. Both projects have the significant support of Engineers Australia. its College of Environmental Engineers and the Society of Sustainability and Environmental Engineering.