122 resultados para rearrangement
em Indian Institute of Science - Bangalore - Índia
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
Thermal rearrangement of diethylamino 5-(m-methoxyphenoxy)-pent-2-yne (3) gives 1-(m-methexyphenoxy)-pent-3,4-diene (14) in about 8% yield. Hydration of the latter yields 1-(m-methoxyphenoxy)-pentan-4-one (6), which has been synthesised by an unambiguous route. A mechanism of formation of the allene (14) from the amine (3) has been suggested.
Resumo:
An efficient five-step synthesis of the pentacyclo- [1 0.2.1.04~8.040~9? .]pentadecane system from cyclopentadiene and lI4-naphthoquinone is described.
Resumo:
Isoquinoline was prepared through the Beckmann rearrangement of cinnamaldoxime over different H-zeolites, K-10 montmorillonite clay, amorphous SiO2–Al2O3 and γ-alumina under well-optimized conditions of temperature, weight hourly space velocity and catalyst loading. Cinnamaldoxime under ambient reaction conditions over the catalysts underwent migration of the anti-styryl moiety to electron deficient nitrogen (Beckmann rearrangement) followed by an intramolecular cyclization to yield isoquinoline. Cinnamo-nitrile (dehydration product) and cinnamaldehyde were formed as by-products. Isoquinoline formation was high on zeolite catalysts (ca. >86.5%) and mordenite (ca. 92.3%) was the most efficient in the series. Catalysts were susceptible for deactivation and the decrease in the percentage conversion of oxime with time is associated with a corresponding increase in the acid hydrolysis producing salicylaldehyde at later stages of the reaction. However, these catalysts retain activity considerably and can be recycled without loss of activity and change of product distribution.
Resumo:
Thermal rearrangement of diethylamino5-(m methoxyphenoxy)-pent-2-yne (3) gives 1-(m-methexyphenoxy)-pent-3,4-diene (14) in about 8% yield. Hydration of the latter yields 1-(m-methoxyphenoxy)-pentan-4-one (6), which has been synthesised by an unambiguous route. A mechanism of formation of the allene (14) from the amine (3) has been suggested.
Resumo:
A new strategy for the construction of the isotwistane skeleton is reported from easily available cyclohexadienes, which involves a one-pot cationic skeletal rearrangement and ene cyclisation of a bicyclo[2.2.2]octenone derivative and a cationic rearrangement of a tricyclo[5.3.0.0(4,8)]decane to a [4.3.1.0(3,7)]decane skeleton as the key steps in the synthesis of 2-pupukeanone.
Resumo:
The titled reaction was effected with iso-amyl nitrite or sodium nitrite, both in cone. H2SO4 at 0-25 degrees C in excellent yields (55-98%). Apart from the mild temperatures employed, organic solvents and reagents can be avoided, and the by-products are CO2 and N-2, so the conditions are environment-friendly. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A variety of ketoxime ethyl carbonates-easily prepared from the oximes and ethyl chloroformate-undergo the Beckmann rearrangement upon treatment with 1 equivalent of boron trifluoride etherate, in dichloromethane solution at room temperature in excellent yields (generally 75-99%). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A variety of ketoxime ethyl carbonates-easily prepared from the oximes and ethyl chloroformate-undergo the Beckmann rearrangement upon treatment with 1 equivalent of boron trifluoride etherate, in dichloromethane solution at room temperature in excellent yields (generally 75-99%). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Aziridinemethanol sulfonate esters react with tetrathiomolybdate 1 to give thiirane derivatives as the major product and cyclic disulfides as minor product under mild reaction conditions via an unprecedented thia-aza-Payne-type rearrangement. Interestingly, when the reaction of I was carried out with 2-aziridino-cyclohexanol derivatives it resulted in the formation of thia-bicyclo[3.1.1]heptane or dithia-bicyclo[3.2.1]octane derivatives.
Resumo:
Rearrangement of a homobrendane derivative 8a to perhydro-1,4-methanoindenesy stem 9a could be brought about either by p-toluenesulfonic acid or boron trifluoride etherate. Similarly, rearrangement of 8b-d led to the formation of perhydro-1,4-methanoindened erivatives 9b-d. On the basis of the location of substituents in the starting material and the product, a probable mechanistic pathway has been suggested. The appropriate modification of the peripheral functionalities in 9 led to efficient total syntheses of (f)-copacamphor (15a),(f)-ylangocamphor (16a), and their homologues 15b and 16b.
Resumo:
An acid catalysed rearrangement was employed for the enantiospecific conversion of isotwistanol to tricyclo5.2.1.0(4.8)]-decanes, which provided support for the proposed biosynthesis of allopupukeananes from pupukeananes. The strategy has been further extended to the enantiospecific synthesis of a homobrexane. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.
Resumo:
Microwave irradiation, using a commercial microwave oven accelerates (in 10–15 min) the three-step ortho ester Claisen rearrangement of allyl and propynyl alcohols in dry DMF in open Erlenmeyer flasks.