26 resultados para atoms

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular level structure of mixtures of water and alcohols is very complicated and has been under intense research in the recent past. Both experimental and computational methods have been used in the studies. One method for studying the intra- and intermolecular bindings in the mixtures is the use of the so called difference Compton profiles, which are a way to obtain information about changes in the electron wave functions. In the process of Compton scattering a photon scatters inelastically from an electron. The Compton profile that is obtained from the electron wave functions is directly proportional to the probability of photon scattering at a given energy to a given solid angle. In this work we develop a method to compute Compton profiles numerically for mixtures of liquids. In order to obtain the electronic wave functions necessary to calculate the Compton profiles we need some statistical information about atomic coordinates. Acquiring this using ab-initio molecular dynamics is beyond our computational capabilities and therefore we use classical molecular dynamics to model the movement of atoms in the mixture. We discuss the validity of the chosen method in view of the results obtained from the simulations. There are some difficulties in using classical molecular dynamics for the quantum mechanical calculations, but these can possibly be overcome by parameter tuning. According to the calculations clear differences can be seen in the Compton profiles of different mixtures. This prediction needs to be tested in experiments in order to find out whether the approximations made are valid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases, EC 3.6.1.1) hydrolyse pyrophosphate in a reaction that provides the thermodynamic 'push' for many reactions in the cell, including DNA and protein synthesis. Soluble PPases can be classified into two families that differ completely in both sequence and structure. While Family I PPases are found in all kingdoms, family II PPases occur only in certain prokaryotes. The enzyme from baker's yeast (Saccharomyces cerevisiae) is very well characterised both kinetically and structurally, but the exact mechanism has remained elusive. The enzyme uses divalent cations as cofactors; in vivo the metal is magnesium. Two metals are permanently bound to the enzyme, while two come with the substrate. The reaction cycle involves the activation of the nucleophilic oxygen and allows different pathways for product release. In this thesis I have solved the crystal structures of wild type yeast PPase and seven active site variants in the presence of the native cofactor magnesium. These structures explain the effects of the mutations and have allowed me to describe each intermediate along the catalytic pathway with a structure. Although establishing the ʻchoreographyʼ of the heavy atoms is an important step in understanding the mechanism, hydrogen atoms are crucial for the mechanism. The most unambiguous method to determine the positions of these hydrogen atoms is neutron crystallography. In order to determine the neutron structure of yeast PPase I perdeuterated the enzyme and grew large crystals of it. Since the crystals were not stable at ambient temperature, a cooling device was developed to allow neutron data collection. In order to investigate the structural changes during the reaction in real time by time-resolved crystallography a photolysable substrate precursor is needed. I synthesised a candidate molecule and characterised its photolysis kinetics, but unfortunately it is hydrolysed by both yeast and Thermotoga maritima PPases. The mechanism of Family II PPases is subtly different from Family I. The native metal cofactor is manganese instead of magnesium, but the metal activation is more complex because the metal ions that arrive with the substrate are magnesium different from those permanently bound to the enzyme. I determined the crystal structures of wild type Bacillus subtilis PPase with the inhibitor imidodiphosphate and an inactive H98Q variant with the substrate pyrophosphate. These structures revealed a new trimetal site that activates the nucleophile. I also determined that the metal ion sites were partially occupied by manganese and iron using anomalous X- ray scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noble gases are mostly known as inert monatomic gases due to their limited reactivity with other elements. However, the first predictions of noble-gas compounds were suggested by Kossel in 1916, by von Antropoff in 1924, and by Pauling in 1930. It took many decades until the first noble-gas compound, XePtF6, was synthesized by Neil Bartlett in 1962. This was followed by gradual development of the field and many noble-gas compounds have been prepared. In 1995, a family of noble-gas hydride molecules was discovered at the University of Helsinki. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. The first molecular species made include HXeI, HXeBr, HXeCl, HKrCl and HXeH. Nowadays the total number of prepared HNgY molecules is 23 including both inorganic and organic compounds. The first and only neutral ground-state argon compound, HArF, was synthetized in 2000. Helium and neon are the only elements in the periodic table that do not form neutral, ground-state molecules. In this Thesis, experimental preparation of eight novel xenon- and krypton-containing organo-noble-gas hydrides made from acetylene (HCCH), diacetylene (HCCCCH) and cyanoacetylene (HCCCN) are presented. These novel species include the first organic krypton compound, HKrCCH, as well as the first noble-gas hydride molecule containing two Xe atoms, HXeCCXeH. Other new compounds are HXeCCH, HXeCC, HXeC4H, HKrC4H, HXeC3N, and HKrC3N. These molecules are prepared in noble-gas matrices (krypton or xenon) using ultraviolet photolysis of the precursor molecule and thermal mobilization of the photogenerated H atoms. The molecules were identified using infrared spectroscopy and ab initio calculations. The formation mechanisms of the organo-noble-gas molecules are studied and discussed in this context. The focus is to evidence experimentally the neutral formation mechanisms of HNgY molecules upon global mobility of H atoms. The formation of HXeCCXeH from another noble-gas compound (HXeCC) is demonstrated and discussed. Interactions with the surrounding matrix and molecular complexes of the HXeCCH molecule are studied. HXeCCH was prepared in argon and krypton solids in addition to a Xe matrix. The weak HXeCCH∙∙∙CO2 complex is prepared and identified. Preparation of the HXeCCH∙∙∙CO2 complex demonstrates an advanced approach to studies of HNgY complexes where the precursor complex (HCCH∙∙∙CO2) is obtained using photolysis of a larger molecule (propiolic acid).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical and physical properties of bimetallic clusters have attracted considerable attention due to the potential technological applications of mixed-metal systems. It is of fundamental interests to study clusters because they are the link between atomic surface and bulk properties. More information of metal-metal bond in small clusters can be hence released. The studies in my thesis mainly focus on the two different kinds of bimetallic clusters: the clusters consisting of extraordinary shaped all metal four-membered rings and a series of sodium auride clusters. As described in most general organic chemistry books nowadays, a group of compounds are classified as aromatic compounds because of their remarkable stabilities, particular geometrical and energetic properties and so on. The notation of aromaticity is essentially qualitative. More recently, the connection has been made between aromaticity and energetic and magnetic properties. Also, the discussions of the aromatic nature of molecular rings are no longer limited to organic compounds obeying the Hückel’s rule. In our research, we mainly applied the GIMIC method to several bimetallic clusters at the CCSD level, and compared the results with those obtained by using chemical shift based methods. The magnetically induced ring currents can be generated easily by employing GIMIC method, and the nature of aromaticity for each system can be therefore clarified. We performed intensive quantum chemical calculations to explore the characters of the anionic sodium auride clusters and the corresponding neutral clusters since it has been fascinating in investigating molecules with gold atom involved due to its distinctive physical and chemical properties. As small gold clusters, the sodium auride clusters seem to form planar structures. With the addition of a negative charge, the gold atom in anionic clusters prefers to carry the charge and orients itself away from other gold atoms. As a result, the energetically lowest isomer for an anionic cluster is distinguished from the one for the corresponding neutral cluster. Mostly importantly, we presented a comprehensive strategy of ab initio applications to computationally implement the experimental photoelectron spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare-gas chemistry is of growing interest, and the recent advances include the "insertion" of a Xe atom into OH and water in the rare-gas hydrides HXeO and HXeOH. The insertion of Xe atoms into the H-C bonds of hydrocarbons was also demonstrated for HXeCC, HXeCCH and HXeCCXeH, the last of which was the first rare-gas hydride containing two rare-gas atoms. We describe the preparation and characterization of a new rare-gas compound, HXeOXeH. HXeOXeH was prepared in solid xenon by photolysis of a suitable precursor, for example water, and subsequent mobilization of the photoproducts. The experimental identification was carried out by FTIR spectroscopy, isotopic substitution and by use of various precursors. The photolytical and thermal stability of the new rare-gas hydride was also studied. The experimental work was supported by extensive quantum chemical calculations provided by our co-workers. HXeOXeH forms in a cryogenic xenon matrix from neutral O and H atoms in a two-step diffusion-controlled process involving HXeO as an intermediate [reactions (1) and (2)]. This formation mechanism is unique in that a rare-gas hydride is formed from another rare-gas hydride. H + Xe + O → HXeO (1) HXeO + Xe + H → HXeOXeH (2) Similarly to other rare-gas hydrides, HXeOXeH has a strongly IR-active H-Xe stretching vibration, allowing its spectral detection at 1379.3 cm-1. HXeOXeH is a very high-energy metastable species, yet thermally more stable than many other rare-gas hydrides. The calculated bending barrier of 0.57 eV, is not enough to explain the observed stability, and HXeOXeH might be affected by additional stabilization from the solid xenon environment. Chemical bonding between xenon and environmentally abundant species like water is of particular importance due to the “missing-xenon” problem. The relatively high thermal stability of HXeOXeH compared to other oxygen containing rare-gas compounds is relevant in this respect. Our work also raises the possibility of polymeric (–Xe–O)n networks, similarly to the computationally studied (XeCC)n polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of an atomic decomposition was introduced by Coifman and Rochberg (1980) for weighted Bergman spaces on the unit disk. By the Riemann mapping theorem, functions in every simply connected domain in the complex plane have an atomic decomposition. However, a decomposition resulting from a conformal mapping of the unit disk tends to be very implicit and often lacks a clear connection to the geometry of the domain that it has been mapped into. The lattice of points, where the atoms of the decomposition are evaluated, usually follows the geometry of the original domain, but after mapping the domain into another this connection is easily lost and the layout of points becomes seemingly random. In the first article we construct an atomic decomposition directly on a weighted Bergman space on a class of regulated, simply connected domains. The construction uses the geometric properties of the regulated domain, but does not explicitly involve any conformal Riemann map from the unit disk. It is known that the Bergman projection is not bounded on the space L-infinity of bounded measurable functions. Taskinen (2004) introduced the locally convex spaces LV-infinity consisting of measurable and HV-infinity of analytic functions on the unit disk with the latter being a closed subspace of the former. They have the property that the Bergman projection is continuous from LV-infinity onto HV-infinity and, in some sense, the space HV-infinity is the smallest possible substitute to the space H-infinity of analytic functions. In the second article we extend the above result to a smoothly bounded strictly pseudoconvex domain. Here the related reproducing kernels are usually not known explicitly, and thus the proof of continuity of the Bergman projection is based on generalised Forelli-Rudin estimates instead of integral representations. The minimality of the space LV-infinity is shown by using peaking functions first constructed by Bell (1981). Taskinen (2003) showed that on the unit disk the space HV-infinity admits an atomic decomposition. This result is generalised in the third article by constructing an atomic decomposition for the space HV-infinity on a smoothly bounded strictly pseudoconvex domain. In this case every function can be presented as a linear combination of atoms such that the coefficient sequence belongs to a suitable Köthe co-echelon space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled nuclear fusion is one of the most promising sources of energy for the future. Before this goal can be achieved, one must be able to control the enormous energy densities which are present in the core plasma in a fusion reactor. In order to be able to predict the evolution and thereby the lifetime of different plasma facing materials under reactor-relevant conditions, the interaction of atoms and molecules with plasma first wall surfaces have to be studied in detail. In this thesis, the fundamental sticking and erosion processes of carbon-based materials, the nature of hydrocarbon species released from plasma-facing surfaces, and the evolution of the components under cumulative bombardment by atoms and molecules have been investigated by means of molecular dynamics simulations using both analytic potentials and a semi-empirical tight-binding method. The sticking cross-section of CH3 radicals at unsaturated carbon sites at diamond (111) surfaces is observed to decrease with increasing angle of incidence, a dependence which can be described by a simple geometrical model. The simulations furthermore show the sticking cross-section of CH3 radicals to be strongly dependent on the local neighborhood of the unsaturated carbon site. The erosion of amorphous hydrogenated carbon surfaces by helium, neon, and argon ions in combination with hydrogen at energies ranging from 2 to 10 eV is studied using both non-cumulative and cumulative bombardment simulations. The results show no significant differences between sputtering yields obtained from bombardment simulations with different noble gas ions. The final simulation cells from the 5 and 10 eV ion bombardment simulations, however, show marked differences in surface morphology. In further simulations the behavior of amorphous hydrogenated carbon surfaces under bombardment with D^+, D^+2, and D^+3 ions in the energy range from 2 to 30 eV has been investigated. The total chemical sputtering yields indicate that molecular projectiles lead to larger sputtering yields than atomic projectiles. Finally, the effect of hydrogen ion bombardment of both crystalline and amorphous tungsten carbide surfaces is studied. Prolonged bombardment is found to lead to the formation of an amorphous tungsten carbide layer, regardless of the initial structure of the sample. In agreement with experiment, preferential sputtering of carbon is observed in both the cumulative and non-cumulative simulations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.