15 resultados para Variable Exponent Spaces

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this dissertation is the geometric and isometric theory of Banach spaces. This work is motivated by the known Banach-Mazur rotation problem, which asks whether each transitive separable Banach space is isometrically a Hilbert space. A Banach space X is said to be transitive if the isometry group of X acts transitively on the unit sphere of X. In fact, some weaker symmetry conditions than transitivity are studied in the dissertation. One such condition is an almost isometric version of transitivity. Another investigated condition is convex-transitivity, which requires that the closed convex hull of the orbit of any point of the unit sphere under the rotation group is the whole unit ball. Following the tradition developed around the rotation problem, some contemporary problems are studied. Namely, we attempt to characterize Hilbert spaces by using convex-transitivity together with the existence of a 1-dimensional bicontractive projection on the space, and some mild geometric assumptions. The convex-transitivity of some vector-valued function spaces is studied as well. The thesis also touches convex-transitivity of Banach lattices and resembling geometric cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tools known as maximal functions are frequently used in harmonic analysis when studying local behaviour of functions. Typically they measure the suprema of local averages of non-negative functions. It is essential that the size (more precisely, the L^p-norm) of the maximal function is comparable to the size of the original function. When dealing with families of operators between Banach spaces we are often forced to replace the uniform bound with the larger R-bound. Hence such a replacement is also needed in the maximal function for functions taking values in spaces of operators. More specifically, the suprema of norms of local averages (i.e. their uniform bound in the operator norm) has to be replaced by their R-bound. This procedure gives us the Rademacher maximal function, which was introduced by Hytönen, McIntosh and Portal in order to prove a certain vector-valued Carleson's embedding theorem. They noticed that the sizes of an operator-valued function and its Rademacher maximal function are comparable for many common range spaces, but not for all. Certain requirements on the type and cotype of the spaces involved are necessary for this comparability, henceforth referred to as the “RMF-property”. It was shown, that other objects and parameters appearing in the definition, such as the domain of functions and the exponent p of the norm, make no difference to this. After a short introduction to randomized norms and geometry in Banach spaces we study the Rademacher maximal function on Euclidean spaces. The requirements on the type and cotype are considered, providing examples of spaces without RMF. L^p-spaces are shown to have RMF not only for p greater or equal to 2 (when it is trivial) but also for 1 < p < 2. A dyadic version of Carleson's embedding theorem is proven for scalar- and operator-valued functions. As the analysis with dyadic cubes can be generalized to filtrations on sigma-finite measure spaces, we consider the Rademacher maximal function in this case as well. It turns out that the RMF-property is independent of the filtration and the underlying measure space and that it is enough to consider very simple ones known as Haar filtrations. Scalar- and operator-valued analogues of Carleson's embedding theorem are also provided. With the RMF-property proven independent of the underlying measure space, we can use probabilistic notions and formulate it for martingales. Following a similar result for UMD-spaces, a weak type inequality is shown to be (necessary and) sufficient for the RMF-property. The RMF-property is also studied using concave functions giving yet another proof of its independence from various parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forestry has influenced forest dwelling organisms for centuries in Fennoscandia. For example, in Finland ca. 30% of the threatened species are threatened because of forestry. Nowadays forest management recommendations include practices aimed at maintaining biodiversity in harvesting, such as green-tree retention. However, the effects of these practices have been little studied. In variable retention, different numbers of trees are retained, varying from green-tree retention (at least a few live standing trees in clear-cuts) to thinning (only individual trees removed). I examined the responses of ground-dwelling spiders and carabid beetles to green-tree retention (with small and large tree groups), gap felling and thinning aimed at an uneven age structure of trees. The impacts of these harvesting methods were compared to those of clear-cutting and uncut controls. I aimed to test the hypothesis that retaining more trees positively affects populations of those species of spiders and carabids that were present before harvesting. The data come from two studies. First, spiders were collected with pitfall traps in south-central Finland in 1995 (pre-treatment) and 1998 (after-treatment) in order to examine the effects of clear-cutting, green-tree retention (with 0.01-0.02-ha sized tree groups), gap felling (with three 0.16-ha sized openings in a 1-ha stand), thinning aiming at an uneven age structure of trees and uncut control. Second, spiders and carabids were caught with pitfall traps in eastern Finland in 1998-2001 (pre-treatment and three post-treatment years) in eleven 0.09-0.55-ha sized retention-tree groups and clear-cuts adjacent to them. Original spider and carabid assemblages were better maintained after harvests that retained more trees. Thinning maintained forest spiders well. However, gap felling and large retention-tree groups maintained some forest spider and carabid species in the short-term, but negatively affected some species over time. However, use of small retention-tree groups was associated with negative effects on forest spider populations. Studies are needed on the long-term effects of variable retention on terrestrial invertebrates; especially those directed at defining appropriate retention patch size and on the importance of structural diversity provided by variable retention for invertebrate populations. However, the aims of variable retention should be specified first. For example, are retention-tree groups planned to constitute life-boats , stepping-stones or to create structural diversity? Does it suffice that some species are maintained, or do we want to preserve the most sensitive ones, and how are these best defined? Moreover, the ecological benefits and economic costs of modified logging methods should be compared to other approaches aimed at maintaining biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.