46 resultados para Teaching of mathematics

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bertrand Russell (1872 1970) introduced the English-speaking philosophical world to modern, mathematical logic and foundational study of mathematics. The present study concerns the conception of logic that underlies his early logicist philosophy of mathematics, formulated in The Principles of Mathematics (1903). In 1967, Jean van Heijenoort published a paper, Logic as Language and Logic as Calculus, in which he argued that the early development of modern logic (roughly the period 1879 1930) can be understood, when considered in the light of a distinction between two essentially different perspectives on logic. According to the view of logic as language, logic constitutes the general framework for all rational discourse, or meaningful use of language, whereas the conception of logic as calculus regards logic more as a symbolism which is subject to reinterpretation. The calculus-view paves the way for systematic metatheory, where logic itself becomes a subject of mathematical study (model-theory). Several scholars have interpreted Russell s views on logic with the help of the interpretative tool introduced by van Heijenoort,. They have commonly argued that Russell s is a clear-cut case of the view of logic as language. In the present study a detailed reconstruction of the view and its implications is provided, and it is argued that the interpretation is seriously misleading as to what he really thought about logic. I argue that Russell s conception is best understood by setting it in its proper philosophical context. This is constituted by Immanuel Kant s theory of mathematics. Kant had argued that purely conceptual thought basically, the logical forms recognised in Aristotelian logic cannot capture the content of mathematical judgments and reasonings. Mathematical cognition is not grounded in logic but in space and time as the pure forms of intuition. As against this view, Russell argued that once logic is developed into a proper tool which can be applied to mathematical theories, Kant s views turn out to be completely wrong. In the present work the view is defended that Russell s logicist philosophy of mathematics, or the view that mathematics is really only logic, is based on what I term the Bolzanian account of logic . According to this conception, (i) the distinction between form and content is not explanatory in logic; (ii) the propositions of logic have genuine content; (iii) this content is conferred upon them by special entities, logical constants . The Bolzanian account, it is argued, is both historically important and throws genuine light on Russell s conception of logic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this dissertation was to explore teaching in higher education from the teachers’ perspective. Two of the four studies analysed the effect of pedagogical training on approaches to teaching and on self-efficacy beliefs of teachers on teaching. Of these two studies, Study I analysed the effect of pedagogical training by applying a cross-sectional setting. The results showed that short training made teachers less student-centred and decreased their self-efficacy beliefs, as reported by the teachers themselves. However, more constant training enhanced the adoption of a student-centred approach to teaching and increased the self-efficacy beliefs of teachers as well. The teacher-focused approach to teaching was more resistant to change. Study II, on the other hand, applied a longitudinal setting. The results implied that among teachers who had not acquired more pedagogical training after Study II there were no changes in the student-focused approach scale between the measurements. However, teachers who had participated in further pedagogical training scored significantly higher on the scale measuring the student-focused approach to teaching. There were positive changes in the self-efficacy beliefs of teachers among teachers who had not participated in further training as well as among those who had. However, the analysis revealed that those teachers had the least teaching experience. Again, the teacher-focused approach was more resistant to change. Study III analysed approaches to teaching qualitatively by using a large and multidisciplinary sample in order to capture the variation in descriptions of teaching. Two broad categories of description were found: the learning-focused and the content-focused approach to teaching. The results implied that the purpose of teaching separates the two categories. In addition, the study aimed to identify different aspects of teaching in the higher-education context. Ten aspects of teaching were identified. While Study III explored teaching on a general level, Study IV analysed teaching on an individual level. The aim was to explore consonance and dissonance in the kinds of combinations of approaches to teaching university teachers adopt. The results showed that some teachers were clearly and systematically either learning- or content-focused. On the other hand, profiles of some teachers consisted of combinations of learning- and content-focused approaches or conceptions making their profiles dissonant. Three types of dissonance were identified. The four studies indicated that pedagogical training organised for university teachers is needed in order to enhance the development of their teaching. The results implied that the shift from content-focused or dissonant profiles towards consonant learning-focused profiles is a slow process and that teachers’ conceptions of teaching have to be addressed first in order to promote learning-focused teaching.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research is based on the problems in secondary school algebra I have noticed in my own work as a teacher of mathematics. Algebra does not touch the pupil, it remains knowledge that is not used or tested. Furthermore the performance level in algebra is quite low. This study presents a model for 7th grade algebra instruction in order to make algebra more natural and useful to students. I refer to the instruction model as the Idea-based Algebra (IDEAA). The basic ideas of this IDEAA model are 1) to combine children's own informal mathematics with scientific mathematics ("math math") and 2) to structure algebra content as a "map of big ideas", not as a traditional sequence of powers, polynomials, equations, and word problems. This research project is a kind of design process or design research. As such, this project has three, intertwined goals: research, design and pedagogical practice. I also assume three roles. As a researcher, I want to learn about learning and school algebra, its problems and possibilities. As a designer, I use research in the intervention to develop a shared artefact, the instruction model. In addition, I want to improve the practice through intervention and research. A design research like this is quite challenging. Its goals and means are intertwined and change in the research process. Theory emerges from the inquiry; it is not given a priori. The aim to improve instruction is normative, as one should take into account what "good" means in school algebra. An important part of my study is to work out these paradigmatic questions. The result of the study is threefold. The main result is the instruction model designed in the study. The second result is the theory that is developed of the teaching, learning and algebra. The third result is knowledge of the design process. The instruction model (IDEAA) is connected to four main features of good algebra education: 1) the situationality of learning, 2) learning as knowledge building, in which natural language and intuitive thinking work as "intermediaries", 3) the emergence and diversity of algebra, and 4) the development of high performance skills at any stage of instruction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study the researcher wanted to show the observed connection of mathematics and textile work. To carry this out the researcher designed a textbook by herself for the upper secondary school in Tietoteollisuuden Naiset TiNA project at Helsinki University of Technology (URL:http://tina.tkk.fi/). The assignments were designed as additional teaching material to enhance and reinforce female students confidence in mathematics and in the management of their textile work. The research strategy applied action research, out of which two cycles two have been carried out. The first cycle consists of establishing the textbook and in the second cycle its usability is investigated. The third cycle is not included in this report. In the second cycle of the action research the data was collected from 15 teachers, five textile teachers, four mathematics teachers and six teachers of both subjects. They all got familiar with the textbook assignments and answered a questionnaire on the basis of their own teaching experience. The questionnaire was established by applying the theories of usability and teaching material assessment study. The data consisted of qualitative and quantitative information, which was analysed by content analysis with computer assisted table program to either qualitative or statistical description. According to the research results, the textbook assignments seamed to be applied better to mathematics lessons than textile work. The assignments pointed out, however, the clear interconnectedness of textile work and mathematics. Most of the assignments could be applied as such or as applications in the upper secondary school textile work and mathematics lessons. The textbook assignments were also applicable in different stages of the teaching process, e.g. as introduction, repetition or to support individual work or as group projects. In principle the textbook assignments were in well placed and designed in the correct level of difficulty. Negative findings concerned some too difficult assignments, lack of pupil motivation and unfamiliar form of task for the teacher. More clarity for some assignments was wished for and there was especially expressed a need for easy tasks and assignments in geometry. Assignments leading to the independent thinking of the pupil were additionally asked for. Two important improvements concerning the textbook attainability would be to get the assignments in html format over the Internet and to add a handicraft reference book.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The topic of this dissertation lies in the intersection of harmonic analysis and fractal geometry. We particulary consider singular integrals in Euclidean spaces with respect to general measures, and we study how the geometric structure of the measures affects certain analytic properties of the operators. The thesis consists of three research articles and an overview. In the first article we construct singular integral operators on lower dimensional Sierpinski gaskets associated with homogeneous Calderón-Zygmund kernels. While these operators are bounded their principal values fail to exist almost everywhere. Conformal iterated function systems generate a broad range of fractal sets. In the second article we prove that many of these limit sets are porous in a very strong sense, by showing that they contain holes spread in every direction. In the following we connect these results with singular integrals. We exploit the fractal structure of these limit sets, in order to establish that singular integrals associated with very general kernels converge weakly. Boundedness questions consist a central topic of investigation in the theory of singular integrals. In the third article we study singular integrals of different measures. We prove a very general boundedness result in the case where the two underlying measures are separated by a Lipshitz graph. As a consequence we show that a certain weak convergence holds for a large class of singular integrals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The monograph dissertation deals with kernel integral operators and their mapping properties on Euclidean domains. The associated kernels are weakly singular and examples of such are given by Green functions of certain elliptic partial differential equations. It is well known that mapping properties of the corresponding Green operators can be used to deduce a priori estimates for the solutions of these equations. In the dissertation, natural size- and cancellation conditions are quantified for kernels defined in domains. These kernels induce integral operators which are then composed with any partial differential operator of prescribed order, depending on the size of the kernel. The main object of study in this dissertation being the boundedness properties of such compositions, the main result is the characterization of their Lp-boundedness on suitably regular domains. In case the aforementioned kernels are defined in the whole Euclidean space, their partial derivatives of prescribed order turn out to be so called standard kernels that arise in connection with singular integral operators. The Lp-boundedness of singular integrals is characterized by the T1 theorem, which is originally due to David and Journé and was published in 1984 (Ann. of Math. 120). The main result in the dissertation can be interpreted as a T1 theorem for weakly singular integral operators. The dissertation deals also with special convolution type weakly singular integral operators that are defined on Euclidean spaces.