Truth, Proof and Gödelian Arguments : A Defence of Tarskian Truth in Mathematics
| Contribuinte(s) |
Helsingin yliopisto, humanistinen tiedekunta, filosofian laitos Helsingfors universitet, humanistiska fakulteten, filosofiska institutionen University of Helsinki, Faculty of Arts, Department of Philosophy |
|---|---|
| Data(s) |
29/04/2009
|
| Resumo |
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. Eräs tärkeimmistä kysymyksistä matematiikanfilosofiassa on totuuden ja formaalin todistettavuuden välinen suhde. Kantaa, jonka mukaan nämä kaksi käsitettä ovat yksi ja sama, kutsutaan deflationismiksi, ja vastakkaista näkökulmaa substantialismiksi. Ensimmäisessä epätäydellisyyslauseessaan Kurt Gödel todisti, että kaikki ristiriidattomat ja aritmetiikan sisältävät formaalit systeemit sisältävät lauseita, joita ei voida sen enempää todistaa kuin osoittaa epätosiksi kyseisen systeemin sisällä. Tällaiset Gödel-lauseet voidaan kuitenkin osoittaa tosiksi, jos laajennamme formaalia systeemiä Alfred Tarskin semanttisella totuusteorialla, kuten Stewart Shapiro ja Jeffrey Ketland ovat näyttäneet semanttisissa argumenteissaan substantialismin puolesta. Heidän mukaansa Gödel-lauseet ovat eksplisiittinen tapaus todesta lauseesta, jota ei voida todistaa, ja siten deflationismi on kumottu. Tätä vastaan Neil Tennant on näyttänyt, että tarskilaisen totuuden sijaan voimme laajentaa formaalia systeemiä ns. pätevyysperiaatteella, jonka mukaan kaikki todistettavat lauseet ovat väitettävissä , ja josta seuraa myös Gödel-lauseiden väitettävyys. Relevantti kysymys ei siis ole se pystytäänkö Gödel-lauseiden totuus osoittamaan, vaan se onko tarskilainen totuus hyväksyttävämpi laajennus kuin pätevyysperiaate. Tässä työssä väitän, että tätä ongelmaa on paras lähestyä ajattelemalla matematiikkaa ilmiönä, joka on laajempi kuin pelkästään formaalit systeemit. Kun otamme huomioon esiformaalin matemaattisen ajattelun, huomaamme että tarskilainen totuus ei itse asiassa ole laajennus lainkaan. Väitän, että totuus on esiformaalissa matematiikassa sitä mitä todistettavuus on formaalissa, ja tarskilainen semanttinen totuuskäsitys kuvaa tätä suhdetta tarkasti. Deflationisti voi kuitenkin argumentoida, että vaikka esiformaali matematiikka on olemassa, voi se silti olla filosofisesti merkityksetöntä mikäli se ei viittaa mihinkään objektiiviseen. Tätä vastaan väitän, että kaikki todella deflationistiset teoriat johtavat matematiikan mielivaltaisuuteen. Kaikissa muissa matematiikanfilosofisissa teorioissa on tilaa objektiiviselle viittaukselle, ja laajennus tarskilaiseen totuuteen voidaan tehdä luonnollisesti. Väitän siis, että mikäli matematiikan mielivaltaisuus hylätään, täytyy hyväksyä totuuden substantiaalisuus. Muita tähän liittyviä aiheita, kuten uusfregeläisyyttä, käsitellään myös tässä työssä, eikä niiden todeta poistavan tarvetta tarskilaiselle totuudelle. Ainoa jäljelle jäävä mahdollisuus deflationistille on vaihtaa logiikkaa niin, että formaalit kielet voivat sisältää omat totuuspredikaattinsa. Tarski osoitti tämän mahdottomaksi klassisille ensimmäisen kertaluvun kielille, mutta muilla logiikoilla ei välttämättä olisi lainkaan tarvetta laajentaa formaaleja systeemejä, ja yllä esitetty argumentti ei pätisi. Vaihtoehtoisista tavoista keskityn tässä työssä eniten Jaakko Hintikan ja Gabriel Sandun riippumattomuusystävälliseen IF-logiikkaan. Hintikka on väittänyt, että IF-kieli voi sisältää oman adekvaatin totuuspredikaattinsa. Väitän kuitenkin, että vaikka tämä onkin totta, tätä predikaattia ei voida tunnistaa totuuspredikaatiksi saman IF-kielen sisäisesti, ja siten tarve tarskilaiselle totuudelle säilyy. IF-logiikan lisäksi myös toisen kertaluvun klassinen logiikka ja Saul Kripken käyttämä Kleenen logiikka epäonnistuvat samalla tavalla. |
| Identificador |
URN:ISBN:978-952-10-5374-0 |
| Idioma(s) |
en |
| Publicador |
Helsingin yliopisto Helsingfors universitet University of Helsinki |
| Relação |
URN:ISBN:978-952-10-5373-3 Tampere: 2009, Philosophical Studies from the University of Helsinki. 1458-8331 |
| Direitos |
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. |
| Palavras-Chave | #teoreettinen filosofia |
| Tipo |
Väitöskirja (monografia) Doctoral dissertation (monograph) Doktorsavhandling (monografi) Text |