35 resultados para INTRASPECIFIC VARIATION
em Helda - Digital Repository of University of Helsinki
Resumo:
Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.
Resumo:
In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.
Resumo:
Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile sites and open areas. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.
Resumo:
This dissertation consists of four articles and an introduction. The five parts address the same topic, nonverbal predication in Erzya, from different perspectives. The work is at the same time linguistic typology and Uralic studies. The findings based on a large corpus of empirical Erzya data, which was collected using several different methods and included recordings of the spoken language, made it possible for the present study to apply, then test and finally discuss the previous theories based on cross-linguistic data. Erzya makes use of multiple predication patterns which vary from totally analytic to the morphologically very complex. Nonverbal predicate clause types are classified on the basis of propositional acts in clauses denoting class-membership, identity, property and location. The predicates of these clauses are nouns, adjectives and locational expressions, respectively. The following three predication strategies in Erzya nonverbal predication can be identified: i. the zero-copula construction, ii. the predicative suffix construction and iii. the copula construction. It has been suggested that verbs and nouns cannot be clearly distinguished on morphological grounds when functioning as predicates in Erzya. This study shows that even though predicativity must not be considered a sufficient tool for defining parts of speech in any language, the Erzya lexical classes of adjective, noun and verb can be distinguished from each other also in predicate position. The relative frequency and degree of obligation for using the predicative suffix construction decreases when moving left to right on the scale verb adjective/locative noun ( identificational statement). The predicative suffix is the main pattern in the present tense over the whole domain of nonverbal predication in Standard Erzya, but if it is replaced it is most likely to be with a zero-copula construction in a nominal predication. This study exploits the theory of (a)symmetry for the first time in order to describe verbal vs. nonverbal predication. It is shown that the asymmetry of paradigms and constructions differentiates the lexical classes. Asymmetrical structures are motivated by functional level asymmetry. Variation in predication as such adds to the complexity of the grammar. When symmetric structures are employed, the functional complexity of grammar decreases, even though morphological complexity increases. The genre affects the employment of predication strategies in Erzya. There are differences in the relative frequency of the patterns, and some patterns are totally lacking from some of the data. The clearest difference is that the past tense predicative suffix construction occurs relatively frequently in Standard Erzya, while it occurs infrequently in the other data. Also, the predicative suffixes of the present tense are used more regularly in written Standard Erzya than in any other genre. The genre also affects the incidence of the translative in uľ(ń)ems copula constructions. In translations from Russian to Erzya the translative case is employed relatively frequently in comparison to other data. This study reveals differences between the two Mordvinic languages Erzya and Moksha. The predicative suffixes (bound person markers) of the present tense are used more regularly in Moksha in all kinds of nonverbal predicate clauses compared to Erzya. It should further be observed that identificational statements are encoded with a predicative suffix in Moksha, but seldom in Erzya. Erzya clauses are more frequently encoded using zero-constructions, displaying agreement in number only.
Resumo:
Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.
Resumo:
The aim of this study was to measure seasonal variation in mood and behaviour. The dual vulnerability and latitude effect hypothesis, the risk of increased appetite, weight and other seasonal symptoms to develop metabolic syndrome, and perception of low illumination in quality of life and mental well-being were assessed. These variations are prevalent in persons who live in high latitudes and need balancing of metabolic processes to adapt to environmental changes due to seasons. A randomized sample of 8028 adults aged 30 and over (55% women) participated in an epidemiological health examination study, The Health 2000, applying the probability proportional to population size method for a range of socio-demographic characteristics. They were present in a face-to-face interview at home and health status examination. The questionnaires included the modified versions of the Seasonal Pattern Assessment Questionnaire (SPAQ) and Beck Depression Inventory (BDI), the Health Related Quality of Life (HRQoL) instrument 15D, and the General Health Questionnaire (GHQ). The structured and computerized Munich Composite International Diagnostic Interview (M-CIDI) as part of the interview was used to assess diagnoses of mental disorders, and, the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria were assessed using all the available information to detect metabolic syndrome. A key finding was that 85% of this nationwide representative sample had seasonal variation in mood and behaviour. Approximately 9% of the study population presented combined seasonal and depressive symptoms with a significant association between their scores, and 2.6% had symptoms that corresponded to Seasonal Affective Disorder (SAD) in severity. Seasonal variations in weight and appetite are two important components that increase the risk of metabolic syndrome. Other factors such as waist circumference and major depressive disorder contributed to the metabolic syndrome as well. Persons reported of having seasonal symptoms were associated with a poorer quality of life and compromised mental well-being, especially if indoors illumination at home and/or at work was experienced as being low. Seasonal and circadian misalignments are suggested to associate with metabolic disorders, and could be remarked if individuals perceive low illumination levels at home and/or at work that affect the health-related quality of life and mental well-being. Keywords: depression, health-related quality of life, illumination, latitude, mental well-being, metabolic syndrome, seasonal variation, winter.
Variation in tracheid cross-sectional dimensions and wood viscoelasticity extent and control methods
Resumo:
Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.
Resumo:
Rhizoctonia solani is a soil inhabiting basidiomycetous fungus able to induce a wide range of symptoms in many plant species. This genetically complex species is divided to 13 anastomosis groups (AG), of which AG-3 is specialized to infect potato. However, also a few other AGs are able to infect or live in close contact with potato. On potato, R. solani infection causes two main types of diseases including stem canker observed as a dark brown lesions on developing stems and stolons, and black scurf that develops on new tubers close to the time of harvest. These disease symptoms are collectively called a ‘Rhizoctonia disease complex’. Between the growing seasons R. solani survives in soil and plant debri as sclerotia or as the sclerotia called black scurf on potato tubers which when used as seed offer the main route for dispersal of the fungus to new areas. The reasons for the dominance of AG-3 on potato seem to be attributable to its highly specialization to potato and its ability to infect and form sclerotia efficiently at low temperatures. In this study, a large nationwide survey of R. solani isolates was made in potato crops in Finland. Almost all characterized isolates belonged to AG-3. Additionally, three other AGs (AG-2-1, AG-4 and AG-5) were found associated with symptoms on potato plants but they were weaker pathogens on potato than AG-3 as less prone to form black scurf. According to phylogenetic analysis of the internal transcribed sequences (ITS) of the ribosomal RNA genes the Finnish AG-3 isolates are closely related to each other even though a wide variation of physiological features was observed between them. Detailed analysis of the ITS regions revealed single nucleotide polymorphism in 14 nucleotide positions of ITS-1 and ITS-2. Additionally, compensatory base changes on ITS-2 were detected which suggests that potato-infecting R. solani AG-3 could be considered as a separate species instead of an AG of R. solani. For the first time, molecular defence responses were studied and detected during the early phases of interaction between R. solani AG-3 and potato. Extensive systemic signalling for defence exploiting several known defence pathways was activated as soon as R. solani came into close contact with the base of a sprout. The defence response was strong enough to protect vulnerable sprout tips from new attacks by the pathogen. These results at least partly explain why potato emergence is eventually successful even under heavy infection pressure by R. solani.
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
The study investigated variation in the ways in which a group of students and teachers of Evangelical Lutheran religious education in Finnish upper secondary schools understand Lutheranism and searched for educational implications for learning in religious education. The aim of understanding the qualitative variation in understanding Lutheranism was explored through the relationship between the following questions, which correspond to the results reported in the following original refereed publications: 1) How do Finnish students understand Lutheranism? 2) How do Finnish teachers of religious education constitute the meaning of Lutheranism? 3) How could phenomenography and the Variation Theory of Learning contribute to learning about and from religion in the context of Finnish Lutheran Religious Education as compared to religious education in the UK? Two empirical studies (Hella, 2007; Hella, 2008) were undertaken from a phenomenographic research perspective (e.g., Marton, 1981) and the Variation Theory of Learning (e.g., Marton & Tsui et al. 2004) that developed from it. Data was collected from 63 upper secondary students and 40 teachers of religious education through written tasks with open questions and complementary interviews with 11 students and 20 teachers for clarification of meanings. The two studies focused on the content and structure of meaning discernment in students and teachers expressed understandings of Lutheranism. Differences in understandings are due to differences in the meanings that are discerned and focused on. The key differences between the ways students understand varied from understanding Lutheranism as a religion to personal faith with its core in mercy. The logical relationships between the categories that describe variation in understanding express a hierarchy of ascending complexity, according to which more developed understandings are inclusive of less developed ones. The ways the teachers understand relate to student s understandings in a sequential manner. Phenomenography and Variation Theory were discussed in the context of religious education in Finland and the UK in relation to the theoretical notion of learning about and from religion (Hella & Wright, 2008). The thesis suggests that variation theory enables religious educators to recognise the unity of learning about and from religion, as learning is always learning about something and involves simultaneous engagement with the object of learning and development as a person. The study also suggests that phenomenography and variation theory offer a means by which it is possible for academics, policy makers, curriculum designers, teachers and students to learn to discern different ways of understanding the contested nature of religions. Keywords: Lutheranism, understanding, variation, teaching, learning, phenomenography, religious education
Resumo:
Environmental variation is a fact of life for all the species on earth: for any population of any particular species, the local environmental conditions are liable to vary in both time and space. In today's world, anthropogenic activity is causing habitat loss and fragmentation for many species, which may profoundly alter the characteristics of environmental variation in remaining habitat. Previous research indicates that, as habitat is lost, the spatial configuration of remaining habitat will increasingly affect the dynamics by which populations are governed. Through the use of mathematical models, this thesis asks how environmental variation interacts with species properties to influence population dynamics, local adaptation, and dispersal evolution. More specifically, we couple continuous-time continuous-space stochastic population dynamic models to landscape models. We manipulate environmental variation via parameters such as mean patch size, patch density, and patch longevity. Among other findings, we show that a mixture of high and low quality habitat is commonly better for a population than uniformly mediocre habitat. This conclusion is justified by purely ecological arguments, yet the positive effects of landscape heterogeneity may be enhanced further by local adaptation, and by the evolution of short-ranged dispersal. The predicted evolutionary responses to environmental variation are complex, however, since they involve numerous conflicting factors. We discuss why the species that have high levels of local adaptation within their ranges may not be the same species that benefit from local adaptation during range expansion. We show how habitat loss can lead to either increased or decreased selection for dispersal depending on the type of habitat and the manner in which it is lost. To study the models, we develop a recent analytical method, Perturbation expansion, to enable the incorporation of environmental variation. Within this context, we use two methods to address evolutionary dynamics: Adaptive dynamics, which assumes mutations occur infrequently so that the ecological and evolutionary timescales can be separated, and via Genotype distributions, which assume mutations are more frequent. The two approaches generally lead to similar predictions yet, exceptionally, we show how the evolutionary response of dispersal behaviour to habitat turnover may qualitatively depend on the mutation rate.
Resumo:
Defence against pathogens is a vital need of all living organisms that has led to the evolution of complex immune mechanisms. However, although immunocompetence the ability to resist pathogens and control infection has in recent decades become a focus for research in evolutionary ecology, the variation in immune function observed in natural populations is relatively little understood. This thesis examines sources of this variation (environmental, genetic and maternal effects) during the nestling stage and its fitness consequences in wild populations of passerines: the blue tit (Cyanistes caeruleus) and the collared flycatcher (Ficedula albicollis). A developing organism may face a dilemma as to whether to allocate limited resources to growth or to immune defences. The optimal level of investment in immunity is shaped inherently by specific requirements of the environment. If the probability of contracting infection is low, maintaining high growth rates even at the expense of immune function may be advantageous for nestlings, as body mass is usually a good predictor of post-fledging survival. In experiments with blue tits and haematophagous hen fleas (Ceratophyllus gallinae) using two methods, methionine supplementation (to manipulate nestlings resource allocation to cellular immune function) and food supplementation (to increase resource availability), I confirmed that there is a trade-off between growth and immunity and that the abundance of ectoparasites is an environmental factor affecting allocation of resources to immune function. A cross-fostering experiment also revealed that environmental heterogeneity in terms of abundance of ectoparasites may contribute to maintaining additive genetic variation in immunity and other traits. Animal model analysis of extensive data collected from the population of collared flycatchers on Gotland (Sweden) allowed examination of the narrow-sense heritability of PHA-response the most commonly used index of cellular immunocompetence in avian studies. PHA-response is not heritable in this population, but is subject to a non-heritable origin (presumably maternal) effect. However, experimental manipulation of yolk androgen levels indicates that the mechanism of the maternal effect in PHA-response is not in ovo deposition of androgens. The relationship between PHA-response and recruitment was studied for over 1300 collared flycatcher nestlings. Multivariate selection analysis shows that it is body mass, not PHA-response, that is under direct selection. PHA-response appears to be related to recruitment because of its positive relationship with body mass. These results imply that either PHA-response fails to capture the immune mechanisms that are relevant for defence against pathogens encountered by fledglings or that the selection pressure from parasites is not as strong as commonly assumed.