53 resultados para Combinatorial Hodge theory
Resumo:
Pragmatism has sometimes been taken as a catchphrase for epistemological stances in which anything goes. However, other authors argue that the real novelty and contribution of this tradition has to do with its view of action as the context in which all things human take place. Thus, it is action rather than, for example, discourses that should be our starting point in social theory. The introductory section of the book situates pragmatism (especially the ideas of G. H. Mead and John Dewey) within the field and tradition of social theory. This introductory also contextualizes the main core of the book which consists of four chapters. Two of these chapters have been published as articles in scientific journals and one in an edited book. All of them discuss the core problem of social theory: how is action related to social structures (and vice versa)? The argument is that habitual action is the explanation for the emergence of social structures from our action. Action produces structures and social reproduction takes place when action is habitualized; that is, when we develop social dispositions to act in a certain manner in familiar environments. This also means that even though the physical environment is the same for all of us, our habits structure it into different kinds of action possibilities. Each chapter highlights these general insights from different angles. Practice theory has gained momentum in recent years and it has many commonalities with pragmatism because both highlight the situated and corporeal character of human activity. One famous proponent of practice theory is Margaret Archer who has argued that the pragmatism of G. H. Mead leads to an oversocialized conception of selfhood. Mead does indeed present a socialized view of selfhood but this is a meta-sociological argument rather than a substantial sociological claim. Accordingly, one can argue that in this general sense intersubjectivity precedes subjectivity and not the other way around. Such a view does not indicate that our social relation would necessarily "colonize" individual action because there is a place for internal conversations (in Archer s terminology); it is especially in those phases of action where it meets obstacles due to the changes of the environment. The second issue discussed has the background assumption that social structures can fruitfully be conceptualized as institutions. A general classification of different institution theories is presented and it is argued that there is a need for a habitual theory of institutions due to the problems associated with these other theories. So-called habitual institutionalism accounts for institutions in terms of established and prevalent social dispositions that structure our social interactions. The germs of this institution theory can be found in the work of Thorstein Veblen. Since Veblen s times, these ideas have been discussed for example, by the economist Geoffrey M. Hodgson. His ideas on the evolution of institutions are presented but a critical stance is taken towards his tendency of defining institutions with the help of rules because rules are not always present in institutions. Accordingly, habitual action is the most basic but by no means the only aspect of institutional reproduction. The third chapter deals with theme of action and structures in the context of Pierre Bourdieu s thought. Bourdieu s term habitus refers to a system of dispositions which structure social fields. It is argued that habits come close to the concept of habitus in the sense that the latter consists of particular kinds of habits; those that are related to the reproduction of socioeconomic positions. Habits are thus constituents of a general theory of societal reproduction whereas habitus is a systematic combination of socioeconomic habits. The fourth theme relates to issues of social change and development. The capabilities approach has been associated with the name of Amartya Sen, for example, and it underscores problems inhering in economistic ways of evaluating social development. However, Sen s argument has some theoretical problems. For example, his theory cannot adequately confront the problem of relativism. In addition, Sen s discussion lacks also a theory of the role of the public. With the help of arguments derived from pragmatism, one gets an action-based, socially constituted view of freedom in which the role of the public is essential. In general, it is argued that a socially constituted view of agency does not necessarily to lead to pessimistic conclusions about the freedom of action.
Resumo:
Reorganizing a dataset so that its hidden structure can be observed is useful in any data analysis task. For example, detecting a regularity in a dataset helps us to interpret the data, compress the data, and explain the processes behind the data. We study datasets that come in the form of binary matrices (tables with 0s and 1s). Our goal is to develop automatic methods that bring out certain patterns by permuting the rows and columns. We concentrate on the following patterns in binary matrices: consecutive-ones (C1P), simultaneous consecutive-ones (SC1P), nestedness, k-nestedness, and bandedness. These patterns reflect specific types of interplay and variation between the rows and columns, such as continuity and hierarchies. Furthermore, their combinatorial properties are interlinked, which helps us to develop the theory of binary matrices and efficient algorithms. Indeed, we can detect all these patterns in a binary matrix efficiently, that is, in polynomial time in the size of the matrix. Since real-world datasets often contain noise and errors, we rarely witness perfect patterns. Therefore we also need to assess how far an input matrix is from a pattern: we count the number of flips (from 0s to 1s or vice versa) needed to bring out the perfect pattern in the matrix. Unfortunately, for most patterns it is an NP-complete problem to find the minimum distance to a matrix that has the perfect pattern, which means that the existence of a polynomial-time algorithm is unlikely. To find patterns in datasets with noise, we need methods that are noise-tolerant and work in practical time with large datasets. The theory of binary matrices gives rise to robust heuristics that have good performance with synthetic data and discover easily interpretable structures in real-world datasets: dialectical variation in the spoken Finnish language, division of European locations by the hierarchies found in mammal occurrences, and co-occuring groups in network data. In addition to determining the distance from a dataset to a pattern, we need to determine whether the pattern is significant or a mere occurrence of a random chance. To this end, we use significance testing: we deem a dataset significant if it appears exceptional when compared to datasets generated from a certain null hypothesis. After detecting a significant pattern in a dataset, it is up to domain experts to interpret the results in the terms of the application.
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
The most prominent objective of the thesis is the development of the generalized descriptive set theory, as we call it. There, we study the space of all functions from a fixed uncountable cardinal to itself, or to a finite set of size two. These correspond to generalized notions of the universal Baire space (functions from natural numbers to themselves with the product topology) and the Cantor space (functions from natural numbers to the {0,1}-set) respectively. We generalize the notion of Borel sets in three different ways and study the corresponding Borel structures with the aims of generalizing classical theorems of descriptive set theory or providing counter examples. In particular we are interested in equivalence relations on these spaces and their Borel reducibility to each other. The last chapter shows, using game-theoretic techniques, that the order of Borel equivalence relations under Borel reduciblity has very high complexity. The techniques in the above described set theoretical side of the thesis include forcing, general topological notions such as meager sets and combinatorial games of infinite length. By coding uncountable models to functions, we are able to apply the understanding of the generalized descriptive set theory to the model theory of uncountable models. The links between the theorems of model theory (including Shelah's classification theory) and the theorems in pure set theory are provided using game theoretic techniques from Ehrenfeucht-Fraïssé games in model theory to cub-games in set theory. The bottom line of the research declairs that the descriptive (set theoretic) complexity of an isomorphism relation of a first-order definable model class goes in synch with the stability theoretical complexity of the corresponding first-order theory. The first chapter of the thesis has slightly different focus and is purely concerned with a certain modification of the well known Ehrenfeucht-Fraïssé games. There we (me and my supervisor Tapani Hyttinen) answer some natural questions about that game mainly concerning determinacy and its relation to the standard EF-game
Resumo:
The modern subject is what we can call a self-subjecting individual. This is someone in whose inner reality has been implanted a more permanent governability, a governability that works inside the agent. Michel Foucault s genealogy of the modern subject is the history of its constitution by power practices. By a flight of imagination, suppose that this history is not an evolving social structure or cultural phenomenon, but one of those insects (moth) whose life cycle consists of three stages or moments: crawling larva, encapsulated pupa, and flying adult. Foucault s history of power-practices presents the same kind of miracle of total metamorphosis. The main forces in the general field of power can be apprehended through a generalisation of three rationalities functioning side-by-side in the plurality of different practices of power: domination, normalisation and the law. Domination is a force functioning by the rationality of reason of state: the state s essence is power, power is firm domination over people, and people are the state s resource by which the state s strength is measured. Normalisation is a force that takes hold on people from the inside of society: it imposes society s own reality its empirical verity as a norm on people through silently working jurisdictional operations that exclude pathological individuals too far from the average of the population as a whole. The law is a counterforce to both domination and normalisation. Accounting for elements of legal practice as omnihistorical is not possible without a view of the general field of power. Without this view, and only in terms of the operations and tactical manoeuvres of the practice of law, nothing of the kind can be seen: the only thing that practice manifests is constant change itself. However, the backdrop of law s tacit dimension that is, the power-relations between law, domination and normalisation allows one to see more. In the general field of power, the function of law is exactly to maintain the constant possibility of change. Whereas domination and normalisation would stabilise society, the law makes it move. The European individual has a reality as a problem. What is a problem? A problem is something that allows entry into the field of thought, said Foucault. To be a problem, it is necessary for certain number of factors to have made it uncertain, to have made it lose familiarity, or to have provoked a certain number of difficulties around it . Entering the field of thought through problematisations of the European individual human forms, power and knowledge one is able to glimpse the historical backgrounds of our present being. These were produced, and then again buried, in intersections between practices of power and games of truth. In the problem of the European individual one has suitable circumstances that bring to light forces that have passed through the individual through centuries.