55 resultados para approximately homogenous C* algebras
Resumo:
Energy conversion by living organisms is central dogma of bioenergetics. The effectiveness of the energy extraction by aerobic organisms is much greater than by anaerobic ones. In aerobic organisms the final stage of energy conversion occurs in respiratory chain that is located in the inner membrane of mitochondria or cell membrane of some aerobic bacteria. The terminal complex of the respiratory chain is cytochrome c oxidase (CcO) - the subject of this study. The primary function of CcO is to reduce oxygen to water. For this, CcO accepts electrons from a small soluble enzyme cytochrome c from one side of the membrane and protons from another side. Moreover, CcO translocates protons across the membrane. Both oxygen reduction and proton translocation contributes to generation of transmembrane electrochemical gradient that is used for ATP synthesis and different types of work in the cell. Although the structure of CcO is defined with a relatively high atomic resolution (1.8 Ã…), its function can hardly be elucidated from the structure. The electron transfer route within CcO and its steps are very well defined. Meanwhile, the proton transfer roots were predicted from the site-specific mutagenesis and later proved by X-ray crystallography, however, the more strong proof of the players of the proton translocation machine is still required. In this work we developed new methods to study CcO function based on FTIR (Fourier Transform Infrared) spectroscopy. Mainly with use of these methods we answered several questions that were controversial for many years: [i] the donor of H+ for dioxygen bond splitting was identified and [ii] the protolytic transitions of Glu-278 one of the key amino acid in proton translocation mechanism was shown for the first time.
Resumo:
The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.
Resumo:
The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.
Resumo:
Vasomotor hot flushes are complained of by approximately 75% of postmenopausal women, but their frequency and severity show great individual variation. Hot flushes have been present in women attending observational studies showing cardiovascular benefit associated with hormone therapy use, whereas they have been absent or very mild in randomized hormone therapy trials showing cardiovascular harm. Therefore, if hot flushes are a factor connected with vascular health, they could perhaps be one explanation for the divergence of cardiovascular data in observational versus randomized studies. For the present study 150 healthy, recently postmenopausal women showing a large variation in hot flushes were studied in regard to cardiovascular health by way of pulse wave analysis, ambulatory blood pressure and several biochemical vascular markers. In addition, the possible impact of hot flushes on outcomes of hormone therapy was studied. This study shows that women with severe hot flushes exhibit a greater vasodilatory reactivity as assessed by pulse wave analysis than do women without vasomotor symptoms. This can be seen as a hot flush-related vascular benefit. Although severe night-time hot flushes seem to be accompanied by transient increases in blood pressure and heart rate, the diurnal blood pressure and heart rate profiles show no significant differences between women without and with mild, moderate or severe hot flushes. The levels of vascular markers, such as lipids, lipoproteins, C-reactive protein and sex hormone-binding globulin show no association with hot flush status. In the 6-month hormone therapy trial the women were classified as having either tolerable or intolerable hot flushes. These groups were treated in a randomized order with transdermal estradiol gel, oral estradiol alone or in combination with medroxyprogesterone acetate, or with placebo. In women with only tolerable hot flushes, oral estradiol leads to a reduced vasodilatory response and increases in 24-hour and daytime blood pressures as compared to women with intolerable hot flushes receiving the same therapy. No such effects were observed with the other treatment regimes or in women with intolerable hot flushes. The responses of vascular biomarkers to hormone therapy are unaffected by hot flush status. In conclusion, hot flush status contributes to cardiovascular health before and during hormone therapy. Severe hot flushes are associated with an increased vasodilatory, and thus, a beneficial vascular status. Oral estradiol leads to vasoconstrictive changes and increases in blood pressure, and thus to possible vascular harm, but only in women whose hot flushes are so mild that they would probably not lead to the initiation of hormone therapy in clinical practice. Healthy, recently postmenopausal women with moderate to severe hot flushes should be given the opportunity to use hormone therapy alleviate hot flushes, and if estrogen is prescribed for indications other than for the control of hot flushes, transdermal route of administration should be favored.
Resumo:
The prevalence of variegate porphyria (VP) (2.1:100 000, in 2006 n=108) was higher in Finland than elsewhere in European countries due to a founder effect (R152C). The incidence of VP was estimated at 0.2:1 000 000 based on the number of new symptomatic patients yearly. The prevalence of porphyria cutanea tarda (PCT) was 1.2:100 000 (in 2006 n=63), which is only one fourth of the numbers reported from other European countries. The estimated incidence of PCT was 0.5:1 000 000. Based on measurements of the uroporphyrinogen decarboxylase activity in erythrocytes, the proportion of familial PCT was 49% of the cases. The prevalence of erythropoietic protoporphyria (EPP) was at 0.8:100 000 (in 2006 n=39) including asymptomatic carriers of a mutation in the ferrochelatase (FECH) gene. The incidence of EPP was estimated at 0.1:1 000 000. After 1980 the penetrance was 37% among patients with VP. Of the mutation carriers (n=57) 30% manifested with skin symptoms. Frequency of skin symptom as only clinical sign was stable before or after 1980 (22% vs. 21%), but acute attacks became infrequent (29% vs. 7%). Of the symptomatic patients 30% had both acute attacks and skin symptoms and 80% had skin symptoms. Fragility (95%) and blistering (46%) of the skin in the backs of the hands were the most common skin symptoms. Transient correction of porphyrin metabolism using eight haem arginate infusions within five weeks had no effect on the skin symptoms in three of four patients with VP. In one case skin symptoms disappeared transiently. One patient with homozygous VP had severe photosensitivity since birth. Sensory polyneuropathy, glaucoma and renal failure developed during the 25-year follow-up without the presence of acute attacks. The I12T mutation was detected in both of his alleles in the protoporphyrinogen oxidase gene. Lack of skin symptoms and infrequency of acute attacks (1/9) in the patients with I12T mutation at the heterozygous stage indicate a mild phenotype (the penetrance 11%). Four mutations (751delGAGAA, 1122delT, C286T, C343T) in the FECH gene were characterised in four of 15 families with EPP. Burning pain (96%) and swelling (92%) of the sun-exposed skin were the major skin symptoms. Hepatopathy appeared in one of 25 symptomatic patients (4%). Clinical manifestations and associated factors of PCT were similar in the sporadic and familial types of PCT. The majority of the patients with PCT had one to three precipitating factors: alcohol intake (78%), mutations in hemochromatosis associated gene (50%), use of oestrogen (25% of women) and hepatitis B or C infections (25 %). Fatty liver disease (67%) and siderosis (67%) were commonly found in their liver biopsies. The major histopathological change of the sun-exposed skin in the patients with VP (n=20), EPP (n=8) and PCT (n=5) was thickening of the vessel walls of the upper dermis suggesting that the vessel wall is the primary site of the phototoxic reaction in each type of porphyria. The fine structure of the vessel walls was similar in VP, EPP and PCT consisting of the multilayered basement membrane and excess of finely granular substance between the layers which were surrounded by the band of homogenous material. EPP was characterised by amorphous perivascular deposits extending also to the extravascular space. In direct immunofluorescence study homogenous IgG deposits in the vessel walls of the upper dermis of the sun-exposed skin were demonstrated in each type of porphyria. In EPP the excess material around vessel walls consisted of other proteins such as serum amyloid protein, and kappa and lambda light chains in addition to the basement membrane constituents such as collagen IV and laminin. These results suggest that the alterations of the vessel walls are a consequence of the repeated damage and the repairing process in the vessel wall. The microscopic alterations could be demonstrated even in the normal looking but sun-exposed skin of the patients with EPP during the symptom-free phase suggesting that vascular change can be chronic. The stability of vascular changes in the patients with PCT after treatment indicates that circulating porphyrins are not important for the maintenance of the changes.
Resumo:
The purpose of this work was to elucidate the ontogeny of interleukin-10 (IL-10) secretion from newborn mononuclear cells (MCs), and to examine its relation to the secretion of interferon-g (IFN-g) and immunoglobulins (Igs). The initial hypothesis was that the decreased immunoglobulin (Ig) synthesis of newborn babies was the result of immature cytokine synthesis regulation, which would lead to excessive IL-10 production, leading in turn to suppressed IFN-g secretion. Altogether 57 full-term newborns and 34 adult volunteers were enrolled. Additionally, surface marker compositions of 29 premature babies were included. Enzyme-linked immunoassays were used to determine the amount of secreted IL-10, IFN-g, and Igs, and the surface marker composition of MC were analyzed with a FACScan flow cytometer. The three most important findings were: 1. Cord blood MC, including CD5+ B cells, are able to secrete IL-10. However, when compared with adults, the secretion of IL-10 was decreased. This indicates that reasons other than excessive IL-10 secretion are responsible of reduced IFN-g secretion in newborns. 2. As illustrated by the IL-10 and IFN-g secretion pattern, newborn cytokine profile was skewed towards the Th2 type. However, approximately 25% of newborns had an adult like cytokine profile with both good IL10 and IFN-g secretion, demonstrating that fullterm newborns are not an immunologically homogenous group at the time of birth. 3. There were significant differences in the surface marker composition of MCs between individual neonates. While gestational age correlated with the proportion of some MC types, it is evident that there are many other maternal and fetal factors that influence the maturity and nature of lymphocyte subpopulations in individual neonates. In conclusion, the reduced ability of neonates to secrete Ig and IFN-g is not a consequence of high IL-10 secretion. However, individual newborns differ significantly in their ability to secrete cytokines as well as Igs.
Resumo:
The aims of this Thesis was to evaluate the role of proangiogenic placental growth factor (PlGF), antiangiogenic endostatin and lymphangiogenic vascular endothelial growth factor (VEGF) -C as well as the receptors vascular endothelial growth factor receptor (VEGFR) -2 and VEGFR-3 during lung development and in development of lung injury in preterm infants. The studied growth factors were selected due to a close relationship with VEGF-A; a proangiogenic growth factor important in normal lung angiogenesis and lung injury in preterm infants. The thesis study consists of three analyses. I: Lung samples from fetuses, preterm and term infants without lung injury, as well as preterm infants with acute and chronic lung injury were stained by immunohistochemistry for PlGF, endostatin, VEGF-C, VEGFR-2 and VEGFR-3. II: Tracheal aspirate fluid (TAF) was collected in the early postnatal period from a patient population consisting of 59 preterm infants, half developing bronchopulmonary dysplasia (BPD) and half without BPD. PlGF, endostatin and VEGF-C concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA). III: Cord plasma was collected from very low birth weight (VLBW) (n=92) and term (n=48) infants in conjuncture with birth and endostatin concentrations were measured by ELISA. I: All growth factors and receptors studied were consistently stained in immunohistochemistry throughout development. For endostatin in early respiratory distress syndrome (RDS), no alveolar epithelial or macrophage staining was seen, whereas in late RDS and BPD groups, both alveolar epithelium and macrophages stained positively in approximately half of the samples. VEGFR-2 staining was fairly consistent, except for the fact that capillary endothelial staining in the BPD group was significantly decreased. II: During the first postnatal week in TAF mean PlGF concentrations were stable whereas mean endostatin and VEGF-C concentrations decreased. Higher concentrations of endostatin and VEGF-C correlated with lower birth weight (BW) and associated with administration of antenatal betamethasone. Parameters reflecting prenatal lung inflammation associated with lower PlGF, endostatin and VEGF-C concentrations. A higher mean supplemental fraction of inspired oxygen during the first 2 postnatal weeks (FiO2) correlated with higher endostatin concentrations. III: Endostatin concentrations in term infants were significantly higher than in VLBW infants. In VLBW infants higher endostatin concentrations associated with the development of BPD, this association remained significant after logistic regression analysis. We conclude that PlGF, endostatin and VEGF-C all have a physiological role in the developing lung. Also, the VEGFR-2 expression profile seems to reflect the ongoing differentiation of endothelia during development. Both endostatin and VEGFR-2 seem to be important in the development of BPD. During the latter part of the first postnatal week, preterm infants developing BPD have lower concentrations of VEGF-A in TAF. Our findings of disrupted VEGFR-2 staining in capillary and septal endothelium seen in the BPD group, as well as the increase in endostatin concentrations both in TAF and cord plasma associated with BPD, seem to strengthen the notion that there is a shift in the angiogenic balance towards a more antiangiogenic environment in BPD. These findings support the vascular hypothesis of BPD.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
Cyclosporine is an immunosuppressant drug with a narrow therapeutic index and large variability in pharmacokinetics. To improve cyclosporine dose individualization in children, we used population pharmacokinetic modeling to study the effects of developmental, clinical, and genetic factors on cyclosporine pharmacokinetics in altogether 176 subjects (age range: 0.36–20.2 years) before and up to 16 years after renal transplantation. Pre-transplantation test doses of cyclosporine were given intravenously (3 mg/kg) and orally (10 mg/kg), on separate occasions, followed by blood sampling for 24 hours (n=175). After transplantation, in a total of 137 patients, cyclosporine concentration was quantified at trough, two hours post-dose, or with dose-interval curves. One-hundred-four of the studied patients were genotyped for 17 putatively functionally significant sequence variations in the ABCB1, SLCO1B1, ABCC2, CYP3A4, CYP3A5, and NR1I2 genes. Pharmacokinetic modeling was performed with the nonlinear mixed effects modeling computer program, NONMEM. A 3-compartment population pharmacokinetic model with first order absorption without lag-time was used to describe the data. The most important covariate affecting systemic clearance and distribution volume was allometrically scaled body weight i.e. body weight**3/4 for clearance and absolute body weight for volume of distribution. The clearance adjusted by absolute body weight declined with age and pre-pubertal children (< 8 years) had an approximately 25% higher clearance/body weight (L/h/kg) than did older children. Adjustment of clearance for allometric body weight removed its relationship to age after the first year of life. This finding is consistent with a gradual reduction in relative liver size towards adult values, and a relatively constant CYP3A content in the liver from about 6–12 months of age to adulthood. The other significant covariates affecting cyclosporine clearance and volume of distribution were hematocrit, plasma cholesterol, and serum creatinine, explaining up to 20%–30% of inter-individual differences before transplantation. After transplantation, their predictive role was smaller, as the variations in hematocrit, plasma cholesterol, and serum creatinine were also smaller. Before transplantation, no clinical or demographic covariates were found to affect oral bioavailability, and no systematic age-related changes in oral bioavailability were observed. After transplantation, older children receiving cyclosporine twice daily as the gelatine capsule microemulsion formulation had an about 1.25–1.3 times higher bioavailability than did the younger children receiving the liquid microemulsion formulation thrice daily. Moreover, cyclosporine oral bioavailability increased over 1.5-fold in the first month after transplantation, returning thereafter gradually to its initial value in 1–1.5 years. The largest cyclosporine doses were administered in the first 3–6 months after transplantation, and thereafter the single doses of cyclosporine were often smaller than 3 mg/kg. Thus, the results suggest that cyclosporine displays dose-dependent, saturable pre-systemic metabolism even at low single doses, whereas complete saturation of CYP3A4 and MDR1 (P-glycoprotein) renders cyclosporine pharmacokinetics dose-linear at higher doses. No significant associations were found between genetic polymorphisms and cyclosporine pharmacokinetics before transplantation in the whole population for which genetic data was available (n=104). However, in children older than eight years (n=22), heterozygous and homozygous carriers of the ABCB1 c.2677T or c.1236T alleles had an about 1.3 times or 1.6 times higher oral bioavailability, respectively, than did non-carriers. After transplantation, none of the ABCB1 SNPs or any other SNPs were found to be associated with cyclosporine clearance or oral bioavailability in the whole population, in the patients older than eight years, or in the patients younger than eight years. In the whole population, in those patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055C haplotype, however, the bioavailability of cyclosporine was about one tenth lower, per allele, than in non-carriers. This effect was significant also in a subgroup of patients older than eight years. Furthermore, in patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055T haplotype, the bioavailability was almost one fifth higher, per allele, than in non-carriers. It may be possible to improve individualization of cyclosporine dosing in children by accounting for the effects of developmental factors (body weight, liver size), time after transplantation, and cyclosporine dosing frequency/formulation. Further studies are required on the predictive value of genotyping for individualization of cyclosporine dosing in children.
Resumo:
We report a measurement of the lifetime of the Lambda_b baryon in decays to the Lambda_C+ pi- final state in a sample corresponding to 1.1 fb^-1 collected in p-pbar collisions at sqrt(s) = 1.96 TeV by the CDF II detector at the Tevatron collider. Using a sample of about 3000 fully reconstructed Lambda_b events we measure tau(Lambda_b) = 1.401 +- 0.046 (stat) +- 0.035 (syst) ps (corresponding to c.tau(Lambda_b) = 420.1 +- 13.7 (stat) +- 10.6 (syst) um, where c is the speed of light). The ratio of this result and the world average B^0 lifetime yields tau(Lambda_b)/tau(B^0) = 0.918 +- 0.038 (stat and syst), in good agreement with recent theoretical predictions.
Resumo:
We present a search for the technicolor particles $\rho_{T}$ and $\pi_{T}$ in the process $p\bar{p} \to \rho_{T} \to W\pi_{T}$ at a center of mass energy of $\sqrt{s}=1.96 \mathrm{TeV}$. The search uses a data sample corresponding to approximately $1.9 \mathrm{fb}^{-1}$ of integrated luminosity accumulated by the CDF II detector at the Fermilab Tevatron. The event signature we consider is $W\to \ell\nu$ and $\pi_{T} \to b\bar{b}, b\bar{c}$ or $b\bar{u}$ depending on the $\pi_{T}$ charge. We select events with a single high-$p_T$ electron or muon, large missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with multiple $b$-tagging algorithms. The observed number of events and the invariant mass distributions are consistent with the standard model background expectations, and we exclude a region at 95% confidence level in the $\rho_T$-$\pi_T$ mass plane. As a result, a large fraction of the region $m(\rho_T) = 180$ - $250 \mathrm{GeV}/c^2$ and $m(\pi_T) = 95$ - $145 \mathrm{GeV}/c^2$ is excluded.
Resumo:
The ability of the peripherally associated membrane protein cytochrome c (cyt c) to bind phospholipids in vitro was studied using fluorescence spectroscopy and large unilamellar liposomes. Previous work has shown that cyt c can bind phospholipids using two distinct mecha- nisms and sites, the A-site and the C-site. This binding is mediated by electrostatic or hydrophobic interactions, respectively. Here, we focus on the mechanism underlying these interactions. A chemically modified cyt c mutant Nle91 was used to study the ATP-binding site, which is located near the evolutionarily invariant Arg 91 on the protein surface. This site was also demonstrated to mediate phospholipid binding, possibly by functioning as a phospholipid binding site. Circular dichroism spectroscopy, time resolved fluorescence spectroscopy of zinc- porphyrin modified [Zn2+-heme] cyt c and liposome binding studies of the Nle91 mutant were used to demonstrate that ATP induces a conformational change in membrane- bound cyt c. The ATP-induced conformational changes were mediated by Arg 91 and were most pronounced in cyt c bound to phospholipids via the C-site. It has been previously reported that the hydrophobic interaction between phospho- lipids and cyt c (C-site) includes the binding of a phospholipid acyl chain inside the protein. In this mechanism, which is known as extended phospholipid anchorage, the sn-2 acyl chain of a membrane phospholipid protrudes out of the membrane surface and is able to bind in a hydrophobic cavity in cyt c. Direct evidence for this type of bind- ing mechanism was obtained by studying cyt c/lipid interaction using fluorescent [Zn2+- heme] cyt c and fluorescence quenching of brominated fatty acids and phospholipids. Under certain conditions, cyt c can form fibrillar protein-lipid aggregates with neg- atively charged phospholipids. These aggregates resemble amyloid fibrils, which are involved in the pathogenesis of many diseases. Congo red staining of these fibers con- firmed the presence of amyloid structures. A set of phospholipid-binding proteins was also found to form similar aggregates, suggesting that phospholipid-induced amyloid formation could be a general mechanism of amyloidogenesis.
Resumo:
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.