36 resultados para P. blanda - Biological potential
Resumo:
Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.
Resumo:
Archaea were long thought to be a group of ancient bacteria, which mainly lived in extreme environments. Due to the development of DNA sequencing methods and molecular phylogenetic analyses, it was shown that the living organisms are in fact divided into three domains; the Archaea, Bacteria and the Eucarya. Since the beginning of the previous decade, it was shown that archaea generally inhabit moderate environments and that these non-extremophilic archaea are more ubiquitous than the extremophiles. Group 1 of non-extreme archaea affiliate with the phylum Crenarchaeota. The most commonly found soil archaea belong to the subgroup 1.1b. However, the Crenarchaeota found in the Fennoscandian boreal forest soil belong to the subgroup 1.1c. The organic top layer of the boreal forest soil, the humus, is dominated by ectomycorrhizal fungal hyphae. These colonise virtually all tree fine root tips in the humus layer and have been shown to harbour distinct bacterial populations different from those in the humus. The archaea have also been shown to colonise both boreal forest humus and the rhizospheres of plants. In this work, studies on the archaeal communities in the ectomycorrhizospheres of boreal forest trees were conducted in microcosms. Archaea belonging to the group 1.1c Crenarchaeota and Euryarchaeota of the genera Halobacterium and Methanolobus were detected. The archaea generally colonised fungal habitats, such as ectomycorrhizas and external mycelia, rather than the non-mycorrhizal fine roots of trees. The species of ectomycorrhizal fungus had a great impact on the archaeal community composition. A stable euryarchaeotal community was detected especially in the mycorrhizas, of most of the tested Scots pine colonising ectomycorrhizal fungi. The Crenarchaeota appeared more sporadically in these habitats, but had a greater diversity than the Euryarchaeota. P. involutus mycorrhizas had a higher diversity of 1.1c Crenarchaeota than the other ectomycorrhizal fungi. The detection level of archaea in the roots of boreal trees was generally low although archaea have been shown to associate with roots of different plants. However, alder showed a high diversity of 1.1c Crenarchaeota, exceeding that of any of the tested mycorrhizas. The archaeal 16S rRNA genes detected from the non-mycorrhizal roots were different from those of the P. involutus mycorrhizas. In the phylogenetic analyses, the archaeal 16S rRNA gene sequences obtained from non-mycorrhizal fine roots fell in a separate cluster within the group 1.1c Crenarchaeota than those from the mycorrhizas. When the roots of the differrent tree species were colonised by P. involutus, the diversity and frequency of the archaeal populations of the different tree species were more similar to each other. Both Cren- and Euryarchaeota were enriched in cultures to which C-1 substrates were added. The 1.1c Crenarchaeota grew anaerobically in mineral medium with CH4 and CO2 as the only available C sources, and in yeast extract media with CO2 and CH4 or H2. The crenarchaeotal diversity was higher in aerobic cultures on mineral medium with CH4 or CH3OH than in the anaerobic cultures. Ecological functions of the mycorrhizal 1.1c Crenarchaeota in both anaerobic and aerobic cycling of C-1 compounds were indicated. The phylogenetic analyses did not divide the detected Crenarchaeota into anaerobic and aerobic groups. This may suggest that the mycorrhizospheric crenarchaeotal communities consist of closely related groups of anaerobic and aerobic 1.1c Crenarchaeota, or the 1.1c Crenarchaeota may be facultatively anaerobic. Halobacteria were enriched in non-saline anaerobic yeast extract medium cultures in which CH4 was either added or produced, but were not detected in the aerobic cultures. They may potentially be involved in anaerobic CH4 cycling in ectomycorrhizas. The CH4 production of the mycorrhizal samples was over 10 times higher than for humus devoid of mycorrhizal hyphae, indicating a high CH4 production potential of the mycorrhizal metanogenic community. Autofluorescent methanogenic archaea were detected by microscopy and 16S rRNA gene sequences of the genus Methanolobus were obtained. The archaeal community depended on both tree species and the type of ectomycorrhizal fungus colonising the roots and the Cren- and Euryarchaeota may have different ecological functions in the different parts of the boreal forest tree rhizosphere and mycorrhizosphere. By employing the results of this study, it may be possible to isolate both 1.1c Crenarchaeota as well as non-halophilic halobacteria and aerotolerant methanogens from mycorrhizospheres. These archaea may be used as indicators for change in the boreal forest soil ecosystem due to different factors, such as exploitations of forests and the rise in global temperature. More information about the microbial populations with apparently low cell numbers but significant ecological impacts, such as the boreal forest soil methanogens, may be of crucial importance to counteract human impacts on such globally important ecosystems as the boreal forests.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.
Resumo:
The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.
Resumo:
Social groups are common across animal species. The reasons for grouping are straightforward when all individuals gain directly from cooperating. However, the situation becomes more complex when helping entails costs to the personal reproduction of individuals. Kin selection theory has offered a fruitful framework to explain such cooperation by stating that individuals may spread their genes not only through their own reproduction, but also by helping related individuals reproduce. However, kin selection theory also implicitly predicts conflicts when groups consist of non-clonal individuals, i.e. relatedness is less than one. Then, individual interests are not perfectly aligned, and each individual is predicted to favour the propagation of their own genome over others. Social insects provide a solid study system to study the interplay between cooperation and conflict. Breeding systems in social insects range from solitary breeding to eusocial colonies displaying complete division of reproduction between the fertile queen and the sterile worker caste. Within colonies, additional variation is provided by the presence of several reproductive individuals. In many species, the queen mates multiply, which causes the colony to consist of half-sib instead of full-sib offspring. Furthermore, in many species colonies contain multiple breeding queens, which further dilutes relatedness between colony members. Evolutionary biology is thus faced with the challenge to answer why such variation in social structure exists, and what the consequences are on the individual and population level. The main part of this thesis takes on this challenge by investing the dynamics of socially polymorphic ant colonies. The first four chapters investigate the causes and consequences of different social structures, using a combination of field studies, genetic analyses and laboratory experiments. The thesis ends with a theoretical chapter focusing on different social interactions (altruism and spite), and the evolution of harming traits. The main results of the thesis show that social polymorphism has the potential to affect the behaviour and traits of both individuals and colonies. For example, we found that genetic polymorphism may increase the phenotypic variation between individuals in colonies, and that socially polymorphic colonies may show different life history patterns. We also show that colony cohesion may be enhanced even in multiple-queen colonies through patterns of unequal reproduction between queens. However, the thesis also demonstrates that spatial and temporal variation between both populations and environments may affect individual and colony traits, to the degree that results obtained in one place or at one time may not be applicable in other situations. This opens up potential further areas of research to explain these differences.
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
The parasitic wasps are one of the largest insect groups and their life histories are remarkably variable. Common to all parasitic wasps is that they kill their hosts, which are usually beetles, butterflies and sometimes spiders. Hosts are often at a larval or pupal stage and live in concealed conditions, such as in plant tissue. Parasitic wasps have two main ways of finding their host. 1) They can detect chemical compounds emitted by damaged plant material or released by larvae living in plant tissue, and 2) detect the larvae by sound vibrations. Even though pupae are immobile and silent, and therefore do not cause vibration, parasitoids have, however, adapted to find passive developmental stages by producing vibration themselves by knocking the substrate with their antennae, and then detecting the echoes with their legs. This echolocation allows a parasitoid to locate its potential hosts that are deeply buried in wood. This study focuses on the relationships of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) and related taxa, and the evolution of host location mechanism. There are no earlier studies of the phylogeny of the Cryptinae, and the position of related taxa are unclear. According to the earlier classification, which is entirely intuitional, the Cryptinae is divided into three tribes: Cryptini, Hemigasterini and Phygadeuontini. Further, these tribes are subdiveded into numerous subtribes. This work, based on molecular characters, shows that the cryptine tribes Cryptini, Phygadeuon¬tini and Hemigasterini come out largely as monophyletic groups, thus agreeing with the earlier classification. The earlier subtribal classification had no support. In addition, it is shown that modified antennal structures are associated with host usage of wood-boring coleopteran hosts. The cryptines have a clear modification series on their antennal tips from a simply tip to a hammer-like structure. The species with strongly modified antennae belong mostly to the tribe Cryptini and they utilise wood-boring beetles as hosts. Also, field observations on insect behaviour support this result.
Resumo:
Placental abruption, one of the most significant causes of perinatal mortality and maternal morbidity, occurs in 0.5-1% of pregnancies. Its etiology is unknown, but defective trophoblastic invasion of the spiral arteries and consequent poor vascularization may play a role. The aim of this study was to define the prepregnancy risk factors of placental abruption, to define the risk factors during the index pregnancy, and to describe the clinical presentation of placental abruption. We also wanted to find a biochemical marker for predicting placental abruption early in pregnancy. Among women delivering at the University Hospital of Helsinki in 1997-2001 (n=46,742), 198 women with placental abruption and 396 control women were identified. The overall incidence of placental abruption was 0.42%. The prepregnancy risk factors were smoking (OR 1.7; 95% CI 1.1, 2.7), uterine malformation (OR 8.1; 1.7, 40), previous cesarean section (OR 1.7; 1.1, 2.8), and history of placental abruption (OR 4.5; 1.1, 18). The risk factors during the index pregnancy were maternal (adjusted OR 1.8; 95% CI 1.1, 2.9) and paternal smoking (2.2; 1.3, 3.6), use of alcohol (2.2; 1.1, 4.4), placenta previa (5.7; 1.4, 23.1), preeclampsia (2.7; 1.3, 5.6) and chorioamnionitis (3.3; 1.0, 10.0). Vaginal bleeding (70%), abdominal pain (51%), bloody amniotic fluid (50%) and fetal heart rate abnormalities (69%) were the most common clinical manifestations of placental abruption. Retroplacental blood clot was seen by ultrasound in 15% of the cases. Neither bleeding nor pain was present in 19% of the cases. Overall, 59% went into preterm labor (OR 12.9; 95% CI 8.3, 19.8), and 91% were delivered by cesarean section (34.7; 20.0, 60.1). Of the newborns, 25% were growth restricted. The perinatal mortality rate was 9.2% (OR 10.1; 95% CI 3.4, 30.1). We then tested selected biochemical markers for prediction of placental abruption. The median of the maternal serum alpha-fetoprotein (MSAFP) multiples of median (MoM) (1.21) was significantly higher in the abruption group (n=57) than in the control group (n=108) (1.07) (p=0.004) at 15-16 gestational weeks. In multivariate analysis, elevated MSAFP remained as an independent risk factor for placental abruption, adjusting for parity ≥ 3, smoking, previous placental abruption, preeclampsia, bleeding in II or III trimester, and placenta previa. MSAFP ≥ 1.5 MoM had a sensitivity of 29% and a false positive rate of 10%. The levels of the maternal serum free beta human chorionic gonadotrophin MoM did not differ between the cases and the controls. None of the angiogenic factors (soluble endoglin, soluble fms-like tyrosine kinase 1, or placental growth factor) showed any difference between the cases (n=42) and the controls (n=50) in the second trimester. The levels of C-reactive protein (CRP) showed no difference between the cases (n=181) and the controls (n=261) (median 2.35 mg/l [interquartile range {IQR} 1.09-5.93] versus 2.28 mg/l [IQR 0.92-5.01], not significant) when tested in the first trimester (mean 10.4 gestational weeks). Chlamydia pneumoniae specific immunoglobulin G (IgG) and immunoglobulin A (IgA) as well as C. trachomatis specific IgG, IgA and chlamydial heat-shock protein 60 antibody rates were similar between the groups. In conclusion, although univariate analysis identified many prepregnancy risk factors for placental abruption, only smoking, uterine malformation, previous cesarean section and history of placental abruption remained significant by multivariate analysis. During the index pregnancy maternal alcohol consumption and smoking and smoking by the partner turned out to be the major independent risk factors for placental abruption. Smoking by both partners multiplied the risk. The liberal use of ultrasound examination contributed little to the management of women with placental abruption. Although second-trimester MSAFP levels were higher in women with subsequent placental abruption, clinical usefulness of this test is limited due to low sensitivity and high false positive rate. Similarly, angiogenic factors in early second trimester, or CRP levels, or chlamydial antibodies in the first trimester failed to predict placental abruption.
Resumo:
Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.
Resumo:
Tieteellinen tiivistelmä Common scab is one of the most important soil-borne diseases of potato (Solanum tuberosum L.) in many potato production areas. It is caused by a number of Streptomyces species, in Finland the causal agents are Streptomyces scabies (Thaxter) Lambert & Loria and S. turgidiscabies Takeuchi. The scab-causing Streptomyces spp. are well-adapted, successful plant pathogens that survive in soil also as saprophytes. Control of these pathogens has proved to be difficult. Most of the methods used to manage potato common scab are aimed at controlling S. scabies, the most common of the scab-causing pathogens. The studies in this thesis investigated S. scabies and S. turgidiscabies as causal organisms of common scab and explored new approaches for control of common scab that would be effective against both species. S. scabies and S. turgidiscabies are known to co-occur in the same fields and in the same tuber lesions in Finland. The present study showed that both these pathogens cause similar symptoms on potato tubers, and the types of symptoms varied depending on cultivar rather than the pathogen species. Pathogenic strains of S. turgidiscabies were antagonistic to S. scabies in vitro indicating that these two species may be competing for the same ecological niche. In addition, strains of S. turgidiscabies were highly virulent in potato and they tolerated lower pH than those of S. scabies. Taken together these results suggest that S. turgidiscabies has become a major problem in potato production in Finland. The bacterial phytotoxins, thaxtomins, are produced by the scab-causing Streptomyces spp. and are essential for the induction of scab symptoms. In this study, thaxtomins were produced in vitro and four thaxtomin compounds isolated and characterized. All four thaxtomins induced similar symptoms of reduced root and shoot growth, root swelling or necrosis on micro-propagated potato seedlings. The main phytotoxin, thaxtomin A, was used as a selective agent in a bioassay in vitro to screen F1 potato progeny from a single cross. Tolerance to thaxtomin A in vitro and scab resistance in the field were correlated indicating that the in vitro bioassay could be used in the early stages of a resistance breeding program to discard scab-susceptible genotypes and elevate the overall levels of common scab resistance in potato breeding populations. The potential for biological control of S. scabies and S. turgidiscabies using a non-pathogenic Streptomyces strain (346) isolated from a scab lesion and S. griseoviridis strain (K61) from a commercially available biocontrol product was studied. Both strains showed antagonistic activity against S. scabies and S. turgidiscabies in vitro and suppressed the development of common scab disease caused by S. turgidiscabies in the glasshouse. Furthermore, strain 346 reduced the incidence of S. turgidiscabies in scab lesions on potato tubers in the field. These results demonstrated for the first time the potential for biological control of S. turgidiscabies in the glasshouse and under field conditions and may be applied to enhance control of common scab in the future.
Resumo:
Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.