235 resultados para Rayon X
Resumo:
Thin SiO2 interlayer is the key to improving the electroluminescence characteristics of light emitting diodes based on ZnO heterojunctions, but little is known of the band offsets of SiO2/ZnO. In this letter, energy band alignment of SiO2/ZnO interface was determined by x-ray photoelectron spectroscopy. The valence band offset Delta E-V of SiO2/ZnO interface is determined to be 0.93 +/- 0.15 eV. According to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V Delta E-C=E-g(SiO2)-E-g(ZnO)-Delta E-V, and taking the room-temperature band-gaps of 9.0 and 3.37 eV for SiO2 and ZnO, respectively, a type-I band-energy alignment of SiO2/ZnO interface with a conduction band offset of 4.70 +/- 0.15 eV is found. The accurate determination of energy band alignment of SiO2/ZnO is helpful for designing of SiO2/ZnO hybrid devices and is also important for understanding their carrier transport properties. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3204028]
Resumo:
A 2 x 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of I mm in length and cross-section of 400 nmx340 nm. The measurement results show that the switch has a V pi L pi figure of merit of 0.145 V-cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.
Resumo:
A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.
Resumo:
In2O3 is a promising partner of InN to form InN/In2O3 heterosystems. The valence band offset (VBO) of wurtzite InN/cubic In2O3 heterojunction is determined by x-ray photoemission spectroscopy. The valence band of In2O3 is found to be 1.47 +/- 0.11 eV below that of InN, and a type-I heterojunction with a conduction band offset (CBO) of 0.49-0.99 eV is found. The accurate determination of the VBO and CBO is important for use of InN/In2O3 based electronic devices.
Resumo:
The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the ZnO/SrTiO3 heterojunction. It is found that a type-II band alignment forms at the interface. The VBO and conduction band offset (CBO) are determined to be 0.62 +/- 0.23 and 0.79 +/- 0.23 eV, respectively. The directly obtained VBO value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. Furthermore, the CBO value is also consistent with the electrical transport investigations.
Resumo:
Optimized AlGaN/AlN/GaN high electron mobility transistor (HEMT) with high mobility GaN channel layer structures were grown on 2-in. diameter semi-insulating 6H-SiC substrates by MOCVD. The 2-in. diameter GaN HEMT wafer exhibited a low average sheet resistance of 261.9 Omega/square, with the resistance un-uniformity as low as 2.23%. Atomic force microscopy measurements revealed a smooth AlGaN surface whose root-mean-square roughness is 0.281 nm for a scan area of 5 x 5 mu m. For the single-cell HEMTs device of 2.5-mm gate width fabricated using the materials, a maximum drain current density of 1.31 A/mm, an extrinsic transconductance of 450 mS/mm, a current gain cutoff frequency of 24 GHz and a maximum frequency of oscillation 54 GHz were achieved. The four-cell internally-matched GaN HEMTs device with 10-mm total gate width demonstrated a very high output power of 45.2 W at 8 GHz under the condition of continuous-wave (CW), with a power added efficiency of 32.0% and power gain of 6.2 dB. To our best knowledge, the achieved output power of internally-matched devices are the state-of-the-art result ever reported for X-band GaN-based HEMTs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
By means of the transfer matrix technique, interface-induced Rashba spin splitting of conduction subbands in Al0.3Ga0.7As/GaAs/AlxGa1-xAs/Al0.3Ga0.7As step quantum wells which contain internal structure inversion asymmetry introduced by the insertion of AlxGa1-xAs step potential is investigated theoretically in the absence of electric field and magnetic field. The dependence of spin splitting on the well width, step width and Al concentration is investigated in detail. We find that the sign of the first excited subband spin splitting changes with well width and step width, and is opposite to that of the ground subband under certain conditions. The sign and strength of the spin splitting are shown to be sensitive to the components of the envelope function at three interfaces. Copyright (C) EPLA, 2009
Resumo:
MgO is a promising gate dielectric and surface passivation film for GaN/AlGaN transistors, but little is known of the band offsets in the MgO/AlN system. X-ray photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (Delta E-v) of MgO/AlN heterostructures. A value of Delta E-v=0.22 +/- 0.08 eV was obtained. Given the experimental band gap of 7.83 eV for MgO, a type-I heterojunction with a conduction band offset of similar to 1.45 eV is found. The accurate determination of the valence and conduction band offsets is important for use of III-N alloys based electronic devices.
Resumo:
The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.
Resumo:
In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.
Resumo:
High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.
Determination of the tilt and twist angles of curved GaN layers by high-resolution x-ray diffraction
Resumo:
The full-width at half-maximum (FWHM) of an x-ray rocking curve (XRC) has been used as a parameter to determine the tilt and twist angles of GaN layers. Nevertheless, when the thickness of GaN epilayer reaches several microns, the peak broadening due to curvature becomes non-negligible. In this paper, using the (0 0 l), l = 2, 4, 6, XRC to minimize the effects of wafer curvature was studied systematically. Also the method to determine the tilt angle of a curved GaN layer was proposed while the Williamson-Hall plot was unsuitable. It was found that the (0 0 6) XRC-FWHM had a significant advantage for high-quality GaN layers with the radius curvature of r less than 3.5 m. Furthermore, an extrapolating method of gaining a reliable tilt angle has also been proposed, with which the calculated error can be improved by 10% for r < 2 m crystals compared with the (0 0 6) XRC-FWHM. In skew geometry, we have demonstrated that the twist angles deriving from the (2 0 4) XRC-FWHM are in accord with those from the grazing incidence in-plane diffraction (IP-GID) method for significantly curved samples.
Resumo:
We investigate theoretically the Dyakonov-Perel spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment [K. L. Litvinenko et al., New J. Phys. 8, 49 (2006)]. We find a strong resonant enhancement of the spin relaxation time appears for spin align along [1 (1) over bar0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.