277 resultados para CAPACITANCE SPECTROSCOPY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clear observations of photoreflectance (PR) spectra due to excitonic transitions in semi-insulating GaAs bulk materials are reported. The modulation mechanism is attributed to the electromodulation induced by the Dember effect. This study indicates that the PR spectroscopy provides an important method for characterizing the crystal quality of high-resistivity GaAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of deep levels of argon-implanted LEC-grown semi-insulating GaAs with implantation dosages ranging from 1 x 10(11) to 1 x 10(15) cm-2 has been performed. Using a photoinduced transient-current spectroscopy (PITCS) it was demonstrated that, for implantation dosages below 1 X 10(13) cm-2, a negative peak or negative transient current (NTC) was observed in the temperature range from 330 to 350 K. The magnitude of this negative peak increased with dosage up to a level of 1 X 10(12) cm-2, beyond which it decreased with dosage. The dosage dependence of the EL3 peak height and the resistance of the specimen have also been investigated. It was observed that the variation of the EL3 peak height with dosage was similar to the variation of the magnitude of the negative peak, that is the EL3 peak height likewise increased with dosage up to 1 X 10(12) cm-2, and then decreased. The resistance of the original high-resistivity specimen dropped abruptly when the dosage reached 1 X 10(12) cm-2. This critical dosage (1 X 10(12) cm-2) was found to be a threshold for the generation of a highly disordered state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].