214 resultados para BOND-VALENCE PARAMETERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by Xray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 +/- 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 +/- 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable biaxial stresses, both tensile and compressive, are applied to a single layer graphene by utilizing piezoelectric actuators. The Gruneisen parameters for the phonons responsible for the D, G, 2D and 2D' peaks are studied. The results show that the D peak is composed of two peaks, unambiguously revealing that the 2D peak frequency (omega(2D)) is not exactly twice that of the D peak (omega(D)). This finding is confirmed by varying the biaxial strain of the graphene, from which we observe that the shift of omega(2D)/2 and omega(D) are different. The employed technique allows a detailed study of the interplay between the graphene geometrical structures and its electronic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of pulsed bias light excitation on the absorption in the defect region of undoped a-Si:H film has been investigated. Ac constant photocurrent method has been used to measure the absorption spectrum. The absorption in the defect region increases with the light pulse duration.The analysis of obtained results does not support the existence of a long time relaxation process of dangling-bond states in a-Si:H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An LCAO-scheme taking into account 10 atomic orbitals (s-, p-, and d-type) is used to calculate the electronic structure of the reconstructed 90-degrees partial dislocation in Si. Two different valence force fields producing deviating results are used for modelling the core structure. Geometrical data published by another group is also used. The aim is to explore the influence of geometry on energy levels. We find that the band structure depends sensitively on bond angles. Using data determined by the Tersoff potential we obtain two bands of which the upper one penetrates deeply into the indirect band gap while the geometry minimizing the simple Keating potential leaves the gap completely clear of dislocation states. Thus, from a theoretical point of view, the chief difficulty in calculating the electronic structure of the reconstructed 90-degrees partial is the lack of accurate structural information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for analyzing the correlation between lattice parameters and point defects in semiconductors has been established. The results of this model for analyzing the substitutes in semiconductors are in accordance with those from Vegard's law and experiments. Based on this model, the lattice strains caused by the antisites, the tetrahedral and octahedral single interstitials, and the interstitial couples are analyzed. The superdilation in lattice parameters of GaAs grown at low temperatures by molecular-beam epitaxy can be interpreted by this model, which is in accordance with the experimental results. This model provides a way of analyzing the stoichiometry in bulk and epitaxial compound semiconductors nondestructively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.