262 resultados para Archive numérique
Resumo:
In this paper, the spectral relation between the master and the frequency-locked slave laser (FLSL) is investigated by the conventional technique of optical intensity modulation and optical heterodyne. Experimentally, we demonstrate that under complete and stable locking condition, the lightwave of the FLSL and the sidebands of the master laser produced by the optical intensity modulation are perfectly coherent (frequency coherence). Referring to our recent studies, the lightwave of the master laser and its corresponding sidebands are also perfectly coherent. Additionally, the spectral structures of two perfectly coherent lightwaves are identical in the level of wave train. Therefore, we indirectly verify that the spectral structures of the FLSL and the master laser are identical in the level of wave train.
Resumo:
The enhancement of quality factor for TE whispering-gallery modes is analyzed for three-dimensional microcylinder resonators based on the destructive interference between vertical leakage modes. In the microcylinder resonator, the TE whispering-gallery modes can couple with vertical propagation modes, which results in vertical radiation loss and low quality factors. However, the vertical loss can be canceled by choosing appropriate thickness of the upper cladding layer or radius of the microcylinder. A mode quality factor increase by three orders of magnitude is predicted by finite-difference time-domain simulation. Furthermore, the condition of vertical leakage cancellation is analyzed.
Resumo:
Mode characteristics of a square microcavity with an output waveguide on the middle of one side, laterally confined by an insulating layer SiO2 and a p-electrode metal Au, are investigated by two-dimensional finite-difference time-domain technique. The mode quality (Q) factors versus the width of the output waveguide are calculated for Fabry-Peacuterot type and whispering-gallery type modes in the square cavity. Mode coupling between the confined modes in the square cavity and the guided modes in the output waveguide determines the mode Q factors, which is greatly influenced by the symmetry behaviors of the modes. Fabry-Peacuterot type modes can also have high Q factors due to the high reflectivity of the Au layer for the vertical incident mode light rays. For the square cavity with side length 4 mu m and refractive index 3.2, the mode Q factors of the Fabry-Peacuterot type modes can reach 10(4) at the mode wavelength of 1.5 mu m as the output waveguide width is 0.4 mu m.
Resumo:
Two-port InGaAsP/InP square resonator microlasers with a side length of 20 mm have been fabricated by the planar technology process, which have two 1 mu m-wide output ports connected to the vertices of the square resonator. Continuous-wave electrically injected microsquare lasers have been realised at room temperature with mode Q-factors of 1.75 x 10(4) at the threshold current.
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.
Resumo:
We investigate numerically the self-imaging effect in a system of multiple coupled photonic crystal waveguides (M-CPCWs) with asymmetric coupling. Then two couplers of 2-CPCWs and 3-CPCWs are cascaded to form an ultracompact triplexer by employing coupling and decoupling of M-CPCWs. The wavelength of 1310 nm propagates along the input direction because the M-CPCWs are decoupled at the same decoupling frequency. The other two wavelengths (1490 and 1550 nm) are separated by combining multimode interference and the dual mode coupling effect. Only by introducing a single defect near the crossing point between two output photonic crystal waveguides (PCWs) are the high extinction ratios for the three wavelengths achieved simultaneously.
Resumo:
We have investigated the optical properties of thick InGaN film grown on GaN by cathodeluminescence (CL) spectroscopy. It is found that there is obvious In composition variation in both growth and lateral direction of InGaN film. The depth distribution of In composition is closely related to the strain relaxation process of InGaN film. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and the CL peak energy shifts towards red. Moreover, a rather apparent In composition fluctuation is found in the relaxed upper part of InGaN layer as confirmed by CL imaging.
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.
Resumo:
Spatially-resolved electroluminescence (EL) images from solar cells contain information of local current distribution. By theoretical analysis of the EL intensity distribution, the current density distribution under a certain current bias and the sheet resistance can be obtained quantitatively. Two-dimensional numerical simulation of the current density distribution is employed to a GaInP cell, which agrees very well with the experimental results. A reciprocity theorem for current spreading is found and used to interpret the EL images from the viewpoint of current extraction. The optimization of front electrodes is discussed based on the results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431390]
Resumo:
InN nanostructures with and without GaN capping layers were grown by using metal-organic chemical vapor deposition. Morphological, structural, and optical properties were systematically studied by using atomic force microscopy, X-ray diffraction (XRD) and temperature-dependent photoluminescence (PL). XRD results show that an InGaN structure is formed for the sample with a GaN capping layer, which will reduce the quality and the IR PL emission of the InN. The lower emission peak at similar to 0.7 eV was theoretically fitted and assigned as the band edge emission of InN. Temperature-dependent PL shows a good quantum efficiency for the sample without a GaN capping layers; this corresponds to a lower density of dislocations and a small activation energy.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs
Resumo:
We propose an ultracompact triplexer based on a shift of the cutoff frequency of the fundamental mode in a planar photonic crystal waveguide (PCW) with a triangular lattice of air holes. The shift is realized by modifying the radii of the border holes adjacent to the PCW core. Some defect holes are introduced to control the beam propagation. The numerical results obtained by the finite-difference time-domain method show that the presented triplexer can separate three specific wavelengths, i.e. 1310, 1490 and 1550 nm with the extinction ratios higher than - 18 dB. The designed device with a size as compact as 12 mu m x 6.5 mu m is feasible for the practical application, and can be utilized in the system of fiber to the home.