199 resultados para clausula rebus sic stantibus
Resumo:
50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.
Resumo:
利用LPCVD方法,在厚表层Si(SOL≈0.5μm)柔性绝缘衬底(SOI)(001)上外延生长出了可与硅衬底上外延晶体质量相比拟的SiC/SOI,表明SOI是一种很有潜力的柔性衬底. Raman 光谱结果表明SiC/SOI外延层比SiC/Si外延层有更大的残存应力,对此从理论上进行了解释.利用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)和喇曼散射光谱(RAM)技术研究了外延材料的晶体结构、界面性质和应变情况.
Resumo:
The results of second-order Raman-scattering experiments on n- and p-type 4H-SiC are presented,covering the acoustic and the optical overtone spectral regions.Some of the observed structures in the spectra are assigned to particular phonon branches and the points in the Brillouin zone from which the scattering originates.There exists a doublet at 626/636cm-1 with energy difference about 10cm-1 in both n- and p-type 4H-SiC,which is similar to the doublet structure with the same energy difference founded in hexagonal GaN,ZnO, and AlN.The cutoff frequency at 1926cm-1 of the second-order Raman is not the overtone of the A1(LO) peak of the n-type doping 4H-SiC,but that of the undoping one.The second-order Raman spectrum of 4H-SiC can hardly be affected by doping species or doping density.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
The high temperature (300~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabricated by low-pressure chemical vapor deposition on Si (100) substrates are investigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage characteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data measured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.
Resumo:
对Ti/6H-SiC Schottky结的反向特性进行了测试和理论分析,提出了一种综合的包括SiC Schottky结主要反向漏电流产生机理的反向隧穿电流模型,该模型考虑了Schottky势垒不均匀性、Ti/SiC界面层电压降和镜像力对SiC Schottky结反向特性的影响,模拟结果和测量值的相符说明了以上所考虑因素是引起SiC Schottky结反向漏电流高于常规计算值的主要原因.分析结果表明在一般工作条件下SiC Schottky结的反向特性主要是由场发射和热电子场发射电流决定的.
Resumo:
在冷壁式不锈钢超高真空系统上,利用低压化学气相淀积(LPCVD)方法在直径为50 mm的单晶Si(100)和Si(111)晶向衬底上生长出了高取向无坑洞的晶态立方相碳化硅(3C-SiC)外延材料,利用反射高能电子衍射(RHEED)和扫描电镜(SEM)技术详细研究了Si衬底的碳化过程、碳化层的表面形貌及缺陷结构,获得了界面平整光滑、没有空洞形成的3C-SiC外延材料,并采用X- 射线衍射(XRD)、双晶X- 射线衍射(DXRD)和霍尔(Hall)测试等技术研究了外延材料的结构和电学特性。
Resumo:
对SiC MOS结构辐照引起的电参数退化及其电特性进行了研究。结果说明
Resumo:
利用LPCVD方法在Si(100)衬底上获得了3C-SiC外延膜,扫描电子显微镜(SEM)研究表明3C-SiC/p—Si界面平整、光滑,无明显的坑洞形成。研究了以In和Al为接触电极的3C-SiC/p—Si异质结的I—V,C-V特性及I—V特性的温度依赖关系,比较了In电极的3C-SiC/p—Si异质结构和以SiGe作为缓冲层的3C-SiC/SiGe/p—Si异质结构的I—V特性,实验发现引入SiGe缓冲层后,器件的反向击穿电压由40V提高到70V以上。室温下A1电极3C-SiC/p—Si二极管的最大反向击穿电压接近100V,品质因子为1.95。
Resumo:
Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown on φ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD). The initial stage of carbonization and the surface morphology of carbonization layers of Si(100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM). It is shown that the optimized carbonization temperature for the growth of voids-free 3S-SiC on Si (100) substrates is 1100 ℃. The electrical properties of SiC layers are characterized using Van der Pauw method. The I-V, C-V, and the temperature dependence of I-V characteristics in n-3C-SiC-p-Si heterojunctions with AuGeNi and Al electrical pads are investigated. It is shown that the maximum reverse breakdown voltage of the n-3C-SiC-p-Si heterojunction diodes reaches to 220V at room temperature. These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).
Resumo:
The Raman measurements have been performed with the back-scattering geometry on the SiC films grown on Si(100) and sapphire (0001) by LPCVD. Typical TO and LO phonon peaks of 3C-SiC were observed for all the samples grown on Si and apphire substrates, indicating the epilayers are 3C-SiC polytype. Using a free-standing 3C-SiC film removed from Si(100) as a free-stress sample, the stresses of 3C-SiC on Si(100) and sapphire (0001) were estimated according to the shift of TO and LO phonons.
Resumo:
Single crystalline 3C-SiC epitaxial layers are grown on φ50mm Si wafers by a new resistively heated CVD/LPCVD system, using SiH_4, C_2H_4 and H_2 as gas precursors. X-ray diffraction and Raman scattering measurements are used to investigate the crystallinity of the grown films. Electrical properties of the epitaxial 3C-SiC layers with thickness of 1 ~ 3μm are measured by Van der Pauw method. The improved Hall mobility reaches the highest value of 470cm~2/(V·s) at the carrier concentration of 7.7 * 10~(17)cm~(-3).
Resumo:
国家自然科学基金
Resumo:
作为第三代的半导体材料—SiC具有禁带宽度大、热导率高、电子的饱和漂移速度大、临界击穿电场高和介电常数低等特点,在高频、大功率、耐高温、抗辐照的半导体器件及紫外探测器和短波发光二极管等方面具有广泛的应用前景。文章综述了半导体SiC材料生长及其器件研制的概况。