164 resultados para monolithic space
Resumo:
A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2:1 with a peak current density of 22.5kA/cm~2. The HEMT has a 1μm gate length with a-1V threshold voltage. A logic circuit called a monostableto-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.
Resumo:
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
Resumo:
Space ordered 1.3μm self-assembled InAs QDs are grown on GaAs(100) vicinal substrates by MOCVD. Photoluminescence measurements show that the dots on vicinal substrates have a much higher PL intensity and a narrower FWHM than those of dots on exact substrates, which indicates better material quality. To obtain 1.3μm emissions of InAs QDs, the role of the so called InGaAs strain cap layer (SCL) and the strain buffer layer (SBL) in the strain relaxation process in quantum dots is studied. While the use of SBL results only in a small change of emission wavelength,SCL can extend the QD's emission over 1.3μm due to the effective strain reducing effect of SCL.
Resumo:
A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade(RGC) transimpedance amplifier (TIA) is designed. The small signal circuit model of DPD is given and the band width design method of a monolithic photoreceiver is presented. An important factor which limits the bandwidth of DPD detector and the photoreceiver is presented and analyzed in detail. A monolithic photoreceiver with 1.71GHz bandwidth and 49dB transimpedance gain is designed and simulated by applying a low-cost 0. 6um CMOS process and the test result is given.
Resumo:
A novel AIN monolithic microchannel cooled heatsink for high power laser diode array is introduced.The high power stack laser diode array with an AIN monolithic microchannel heatsink is fabricated and tested.The thermal impedance of a 10 stack laser diode array is 0.121℃/W.The pitch between two adjacent bars is 1.17mm.The power level of 611W is achieved under the 20% duty factor condition at an emission wavelength around 808nm.
Resumo:
Monolithic electro-absorption modulated distributed-feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0.5V to 3.0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1.5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.
Resumo:
国家863计划
Resumo:
国家863计划
Resumo:
国家863计划
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-travelling furnace under microgravity. The crystal was characterized systematically and was used in fabricating low noise field effect transistors and analogue switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single. crystal has surpassed the best. terrestrial counterparts. Studies on the correlation between SI-GaAs wafers and the electronic devices and integrated circuits indicate that the characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry.
Resumo:
A semi-insulating (SI) GaAs single crystal ingot was successfully grown in a recoverable satellite. The two-dimensional distribution of stoichiometry in space-grown SI-GaAs single crystal wafer was studied nondestructively based upon x-ray Band diffraction. The avenge stoichiometry in the space-grown crystal is 0.50007 with mean square deviation of 6 x 10(-6), and shows a better stoichiametric property than the ground-grown SI-GaAs. The average etch pit density (EPD) of dislocations in the crystal revealed by molten KOH is 2.0 x 10(4) cm(-2), and the highest EPD is 3.1 x 10(4) cm(-2). This result indicates that the structural properly of the crystal is quite good.
Resumo:
Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-traveling furnace under microgravity. The characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry, i.e. the ration of two types of atoms in the crystal. a practical technique for nondestructive and quantitative measuring stoichiometry in GaAs single crystal was used to analyze the space-grown GaAs single crystal. The distribution of stoichiometry in a GaAs wafer was measured for the first time. The electrical, optical and structural properties of the space-grown GaAs crystal were studied systematically, Device fabricating experiments prove that the quality of field effect transistors fabricated from direct ion-implantation in semi-insulating GaAs wafers has a close correlation with the crystal's stoichiometry. (C) 2000 Elsevier Science S.A. All rights reserved.