150 resultados para Semi-Regular
Improvement of the electrical property of semi-insulating InP by suppression of compensation defects
Resumo:
Semi-insulating (SI) InP obtained by iron phosphide ambient annealing has very low concentration of deep level defects and better electrical property than SI-InP annealed in phosphorus ambient. The defect suppression phenomenon correlates with Fe diffusion and substitution in the annealing process. Analysis of the experimental result suggests that a high activation ratio of incorporated Fe in InP has an effect of defect suppression in Fe-doped and Fe-diffused SI-InP.
Resumo:
We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.
Resumo:
The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.
Resumo:
The GaInAsSb/AlGaAsSb/GaSb heterostructures were grown by the liquid phase epitaxy (LPE) technique. The materials were characterized by means of optical microscopy, electroprobe microanalysis (EPMA), double-crystal X-ray diffraction, capacitance-voltage (C-V) and Van der Pauw measurments, infrared absorption spectra, photoluminescence and laser Raman scattering. The results show that the materials have fine surface morphology, low lattice mismatch and good homogeneity. Room-temperature light-emitting diodes with an emission wavelength of 2.2-mu-m were obtained by using the GaInAsSb/AlGaAsSb DH structures.
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.
Resumo:
The influences of arsenic interstitials and dislocations on the lattice parameters of undoped semi-insulating (SI) GaAs single crystals were analyzed. It was shown that the dislocations in such crystals serve as effective gettering sites for arsenic interstitials due to the deformation energy of dislocations. The average excess arsenic in GaAs epilayers grown by molecular-beam epitaxy (MBE) at low temperatures (LT) is about 1%, and the lattice parameters of these epilayers are larger than those of liquid-encapsulated Czochralski-grown (LEG) SI-GaAs by about 0.1%. The atomic ratio, [As]/([Ga] + [As]), in SI-GaAs grown by low-pressure (LP) LEC is the nearest to the strict stoichiometry compared with those grown by high-pressure (HP) LEC and vertical gradient freeze (VGF). After multiple wafer annealing (MWA), the crystals grown by HPLEC become closer to be strictly stoichiometric.
Assessment of the structural properties of GaAs/Si epilayers using X-ray (004) and (220) reflections
Resumo:
We improved the method previously used to determine the lattice constants and misorientation of GaAs/Si by recording the patterns of X-ray (004) and (220) reflections. The (220) reflection was measured from the (110) cross section of a GaAs/Si epilayer. The structural properties of the GaAs/Si epilayers grown by metal-organic chemical-vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were investigated. The rotation angle of GaAs/Si epilayers grown by MOCVD using an a-Si buffer layer is very small and the lattice constants of these GaAs/Si epilayers agree quite well with elastic theory.
Resumo:
The influences of microdefects and dislocations on the lattice parameters of undoped semi-insulating GaAs single crystals were analyzed, and a novel nondestructive method for measuring stoichiometry in undoped semi-insulating GaAs was established in this letter. The comparison of this method with coulometric titration indicates that the method of nondestructive measurements is indeed convenient and reliable. (C) 1996 American Institute of Physics.
Resumo:
The dislocations and precipitates in SI-GaAs single crystals are revealed by ultrasonic-aided Abrahams-Buiocchi etching (USAB), and the etch pits are observed and measured by metalloscope and scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), respectively. The size of etch pit revealed by USAB etching is about 1 order of magnitude smaller than that revealed by molten KOH. The amount of arsenic atoms in the dislocation-dense zone is about 1% larger than that in an adjacent dislocation-free zone measured by EDS attached to SEM, which indicates that the excess arsenic atoms adjacent to the dislocation-dense zone are attracted to the dislocations and precipitate there due to the deformation energy.