326 resultados para Quenching mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to define its characteristics of the photosynthetic utilization of CO2 and HCO3- when the ambient inorganic carbon changed, HCG (High-CO2-Growing Cells) of cyanobacterium Anabaena sp. strain PCC7120 were prepared. The growth rate of HCG was higher than that of LCG (low-CO2-growing cells, i.e. air-growing cells). When the HCG cells were transferred from 5% CO2 to air levels of CO2 , a series of changes took place: its carbonic anhydrase activity as well as its photosynthetic affinity to the external inorganic carbon significantly increased; the number of the carboxysomes, which is one of the most important components of CCM in cyanobacteria also increased. These facts indicated that the CCM activity of Anabaena PCC 7120 was induced. When the pH in the medium increased from 6 to 9, the photosynthetic affinity to external inorganic carbon of both HCG and LCG declined, while the apparent photosynthetic affinity to external CO2 increased. In the light of these findings, this inducible CCM in cyanobacteria provided a good model for the study of the photosynthetic Ci utilization in the phototrophic microoganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtrable phosphorus compounds in a shallow Chinese freshwater lake (Donghu Lake) were fractionated by Sephadex G-25 gel-filtration chromatography. Some portions of those compounds released soluble reactive phosphorus upon irradiation with low dose ultraviolet light. Catalase and a hydroxyl radical scavenger (mannitol) markedly prevented photosensitive phosphorus release. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between UV irradiation and humic substances in the water. There was a strong seasonality in UV-sensitive P (UVSP) release. Michaels constants (K-m) of total alkaline phosphatase in the lake water showed a direct positive relation to UVSP. Plot of K-m against the UVSP/phosphomonoester ratio reveals a strong relationship between the two variables. These results suggest that in some situations UVSP may be a competitive inhibitor of alkaline phosphatase activity in the lake. The competitive inhibition of fractionated UVSP on alkaline phosphatase reagent (Sigma) apparently supports this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of Au and dielectric material is analyzed by the finite difference time domain method in two dimensions. The results show that the transmission field can be enhanced by the corrugations on the output plane, which is a supplementary explanation for the extraordinary optical transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable-temperature photoluminescence (PL) spectra of Si-doped self-assembled InGaAs quantum dots (QDs) with and without GaAs cap layers were measured. Narrow and strong emission peak at 1075 nm and broad and weak peak at 1310 nm were observed for the buried and surface QDs at low temperature, respectively. As large as 210 meV redshift of the PL peak of the surface QDs with respect to that of the buried QDs is mainly due to the change of the strain around QDs before and after growth of the GaAs cap layer. Using the developed localized-state luminescence model, we quantitatively calculate the temperature dependence of PL peaks and integrated intensities of the two samples. The results reveal that there exists a large difference in microscopic mechanisms of PL thermal quenching between two samples. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In undoped high-resistivity GaN epilayers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire, deep levels are investigated by persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) measurements. The PPC and OQ are studied by exciting the samples with two beams of radiation of various wavelengths and intensities. When the light wavelengths of 300 and 340 nm radiate the GaN epilayer, the photocurrent without any quenching effect is rapidly increased because the band gap transition only occurs. If the background light is 340 nm and the quenching light is 564 or 828 nm, the quenching of a small photocurrent generates but clearly. Two broad quenching bands that extend from 385 to 716 nm and from 723 to 1000 nm with a maximum at approximately 2.2 eV (566 nm) is observed. These quenching bands are attributed to hole trap level's existence in the GaN epilayer. We point out that the origin of the defects responsible for the optical quenching can be attributed to nitrogen antisite and/or gallium vacancy. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependence of optical properties of GaInNAs/GaAs quantum wells (QWs) has been studied by photoluminescence (PL) and time-resolved PL. A rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results strongly suggest that the non-radiative recombination process plays a very important role at low temperature. In the TRPL measurement the shape of the PL decay curve shows significant difference under different excitation powers. It is attributed to the different involvement of non-radiative recombination in the overall recombination process. The TRPL data are well fitted with the rate equation involving both the radiative and non-radiative recombination. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical and electrical characterization of the ZnS self-organized quantum dots (QDs) embedded in ZnS by molecular beam epitaxy have been investigated using photoluminescence (PL), capacitance-voltage (C-V), and deep level transient Fourier spectroscopy (DLTFS) techniques. The temperature dependence of the free exciton emission was employed to clarify the mechanism of the PL thermal quenching processes in the ZnSe QDs. The PL experimental data are well explained by a two-step quenching process. The C-V and DLTFS techniques were used to obtain the quantitative information on the electron thermal emission from the ZnSe QDs. The correlation between the measured electron emission from the ZnSe QDs in the DLTFS and the observed electron accumulation in the C-V measurements was clearly demonstrated. The emission energy for the ground state of the ZnSe QDs was determined to be at about 120 meV below the conduction band edge of the ZnS barrier, which is in good agreement with the thermal activation energy, 130 meV, obtained by fitting the thermal quenching process of the free exciton PL peak. (C) 2003 American Institute of Physics.