129 resultados para Growth mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-04-13T16:03:37Z No. of bitstreams: 1 Growing 20 cm Long DWNTsTWNTs at a Rapid Growth Rate of 80-90 mu ms .pdf: 3229914 bytes, checksum: 0259795afb443dc6901c11df5ecd325a (MD5)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlxInyGa1-x-yN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures from 800 to 870degreesC. The incorporation of indium is found to increase with decreasing growth temperature, while the incorporation of Al remains nearly constant. The optical properties of the samples have been investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL) at different temperatures. The results show that the sample grown at 820 C exhibits the best optical quality for its large PL intensity and the absence of the yellow luminescence. Furthermore the temperature-dependent PL and TRPL of the sample reveals its less exciton localization effect caused by alloy fluctuations. In the scanning electron microscopy measurement, much uniform surface morphology is found for the sample grown at 820degreesC, in good agreement with the PL results, The improvement of AlxInyGa1-x-yN quality is well correlated with the incorporation of indium into AlGaN and the possible mechanism is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three minutes' growth was carried out to investigate the indium-doping effect on initially grown GaN. Indium-doped and undoped samples were grown by low-pressure metalorganic vapor phase epitaxy. Atomic force microscope observation revealed that In-doping modified the morphology of the nuclei. Indium-doping also enhanced wetting between the buffer and nuclei layers, which was also supported by optical transmission. Photoluminescence suggested that indium-doping obviously enhanced band-edge related emission even in the nucleation stage. X-ray diffraction performed on samples grown for 20 minutes indicated improvement of the crystalline quality through indium-doping. The mechanism of the indium-doping effect was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is believed that during the initial stage of diamond film growth by chemical-vapor deposition (CVD), ion bombardment is the main mechanism in the bias-enhanced-nucleation (BEN) process. To verify such a statement, experiments by using mass-separated ion-beam deposition were carried out, in which a pure carbon ion beam, with precisely defined low energy, was selected for investigating the ion-bombardment effect on a Si substrate. The results are similar to those of the BEN process, which supports the ion-bombardment-enhanced-nucleation mechanism. The formation of sp(3) bonding is based on the presumption that the time of stress generation is much shorter than the duration of the relaxation process. The ion-bombarded Si is expected to enhance the CVD diamond nucleation density because the film contains amorphous carbon embedded with nanocrystalline diamond and defective graphite. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface reaction mechanism of Si1-xGex/Si growth using SiH4 and GeH4 in UHV/CVD system was studied. The saturated adsorption and desorption of SiH4 from Si(1 0 0) surface was investigated with the help of TPD and RHEED, and it was found that all the 4 hydrogen atoms of one SiH4 molecule were adsorbed to the Si surface, which meant that the dissociated adsorption ratio was proportional to 4 power of surface vacancies. The analysis of the reaction of GeH4 was also done. A new surface reaction kinetic model on Si1-xGex/Si epitaxial growth under UHV conditions by SiH4/GeH4 was proposed based on these studies. The predictions of the model were verified by the experimental results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phenomenological model is proposed to explain quantitatively the interesting compositional dependence on the Ge incorporation rate during low-temperature growth of Si1-xGex by disilane and solid-Ge molecular beam epitaxy, based on enhanced hydrogen desorption from Si sites due to the presence of Ge atoms. The hydrogen desorption rate constant for disilane on Si sites is fitted to an exponential function of Ge incorporation rate and a possible physical explanation is discussed. Simulated results are in excellent agreement with experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)02109-X].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.