186 resultados para scattering noise
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is proposed in this paper. The intrinsic response is extracted from the measured transmission coefficients of laser diode, and the parasitics of packaging net-work laser chip are determined from the measured reflection coefficient of laser diode simultaneously. It is shown that the theories agree well with the experimental results.
Resumo:
Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
Resumo:
Nonpolar (1120) a-plane GaN thin films were grown on r-plane (1102) sapphire substrates by low-pressure metal organic chemical vapor deposition (MOCVD). The stress characteristics of the a-plane GaN films were investigated by means of polarized Raman scattering spectra in backscattering configurations. The experimental results show that there are strong anisotropic in-plane stresses within the epitaxial a-plane GaN films by calculating the corresponding stress tensors. The temperature dependence of Raman scattering spectra was studied in the range from 100 K to 550 K. The measurements reveal that the Raman phonon frequencies decrease with increasing temperature. The temperature at which nonpolar a-plane GaN films are strain free is discussed. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
National Natural Science Foundation of China 10674129
Resumo:
We report on stacking fault (SF) detection in free-standing cubic-SiC epilayer by the Raman measurements. The epilayer with enhanced SFs is heteroepitaxially grown by low pressure chemical vapour deposition on a Si(100) substrate and is released in KOH solution by micromechanical manufacture, on which the Raman measurements are performed in a back scattering geometry. The TO line of the Raman spectra is considerably broadened and distorted. We discuss the influence of SFs on the intensity profiles of TO mode by comparing our experimental data with the simulated results based on the Raman bond polarizability (BP) model in the framework of linear-chain concept. Good agreement with respect to the linewidth and disorder-induced peak shift is found by assuming the mean distance of the SFs to be 11 angstrom in the BP model.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.
Resumo:
A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.
Resumo:
Electron mobility limited by nitrogen vacancy scattering was taken into account to evaluate the quality of n-type GaN grown by metal-organic vapor phase epitaxy. Two assumptions were made for this potential for the nitrogen vacancy (1) it acts in a short range, and (2) does not diverge at the vacancy core. According to the above assumptions, a general expression to describe the scattering potential U(r) = - U-0 exp[- (r/beta)(n)], (n = 1, 2,...,infinity) was constructed, where beta is the potential well width. The mobilities for n = 1, 2, and infinity were calculated based on this equation, corresponding to the simple exponential, Gaussian and square well scattering potentials, respectively. In the limiting case of kbeta << 1 (where k is the wave vector), all of the mobilities calculated for n = 1, 2, and infinity showed a same result but different prefactor. Such difference was discussed in terms of the potential tail and was found that all of the calculated mobilities have T-1/2 temperature and beta(-6) well width dependences. A mobility taking account of a spatially complicate scattering potential was studied and the same temperature dependence was also found. A best fit between the calculated results and experimental data was obtained by taking account of the nitrogen vacancy scattering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.