153 resultados para Russian films
Resumo:
ZnO thin films were grown on single-crystal gamma-LiAlO2 (LAO) and sapphire (0001) substrate by pulsed laser deposition (PLD). The structural, optical and electrical properties of ZnO films were investigated. The results show that LAO is more suitable for fabricating ZnO films than sapphire substrate and the highest-quality ZnO film was attained on LAO at the substrate temperature of 550 degrees C. However, when the substrate temperature rises to 700 degrees C, lithium would diffuse from the substrate (LAO) into ZnO film which makes ZnO film on LAO becomes polycrystalline without preferred orientation, the stress in ZnO film increases dominantly and the resistivity of the film decreases exponentially. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO thin films were deposited on the substrates of (100) gamma-LiAlO2 at 400, 550 and 700 degrees C using pulsed laser deposition (PLD) with the fixed oxygen pressure of 20 Pa, respectively. When the substrate temperature is 400 degrees C, the grain size of the film is less than 1 mu m observed by Leitz microscope and measured by X-ray diffraction (XRD). As the substrate temperature increases to 550 degrees C, highly-preferred c-orientation and high-quality ZnO film can be attained. While the substrate temperature rises to 700 degrees C, more defects appears on the surface of film and the ZnO films become polycrystalline again possibly because more Li of the substrate diffused into the ZnO film at high substrate temperature. The photoluminescence (PL) spectra of ZnO films at room temperature show the blue emission peaks centered at 430 nm. We suggest that the blue emission corresponds to the electron transition from the level of interstitial Zn to the valence band. Meanwhile, the films grown on gamma-LiAlO2 (LAO) exhibit green emission centered at 540 nm, which seemed to be ascribed to excess zinc and/or oxygen vacancy in the ZnO films caused by diffusion of Li. from the substrates into the films during the deposition.
Resumo:
Optical properties for ZnO thin films grown on (100) γ-LiAlO2 (LAO) substrate by pulsed laser deposition method were investigated. The c-axis oriented ZnO films were grown on (100) γ-LiAlO2 substrates at the substrate temperature of 550 Celsius degrees. The transmittance of the films was over 85%. Peaks attributed to excitons were shown in absorption spectra, which indicated that thin films had high crystallinity. Photoluminescence spectra with the maximum peak at 540 nm were observed at room temperature, which seemed to be ascribed to oxygen vacancy in the ZnO films caused by diffusion of Li from the substrates into the films during the deposition.
Resumo:
The annealing effects of sapphire substrates on the quality of epitaxial ZnO films grown by dc reactive magnetron sputtering were studied. The atomic steps formed on (0001) sapphire (alpha-Al2O3) substrates surface by annealing at high temperature were analyzed by atomic force microscopy. Their influence on the growth of ZnO films was examined by X-ray diffraction and photoluminescence measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates for ZnO grown by magnetron sputtering is 1400 degrees C for 1 h in air.
Resumo:
Nonpolar a-plane (1 1 2 0) ZnO films are fabricated on (3 0 2)gamma-LiAlO2 substrate by pulsed laser deposition. When substrate temperature is low, c-plane ZnO is dominant. As growth temperature increases to similar to 500 degrees C, pure (1 1 2 0)-oriented ZnO film can be obtained. The X-ray rocking curve of a-plane ZnO film broadens sharply when growth temperature is up to similar to 650 degrees C; such a broadening may be related to the anisotropic lateral growth rate of (1 12 0)-oriented ZnO grains. Atomic force microscopy reveals the surface morphology changes of ZnO films deposited at different temperatures. Raman spectra reveal that a compressive stress exists in the a-plane ZnO film. (C) 2007 Published by Elsevier B.V.
Resumo:
Homoepitaxial ZnO films have been grown via liquid-phase epitaxy (LPE) on (000 1) oriented ZnO substrates. X-ray rocking curve revealed the high quality of the ZnO films with a FWHM of 40 arc sec. Films of thickness about 20 gm were gown in the temperature range 700-720 degrees C. The growth rate of ZnO films was estimated to be 0.3 mu m h(-1). Atomic force microscope analysis showed that the surface roughness of ZnO films was very low, which further confirmed the high crystallinity of ZnO films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Morphological defects in beta-barium borate (beta-BBO) thin films grown on Sr2+ -doped alpha-BBO substrates by liquid phase epitaxy (LPE) technique were studied by scanning electron micrograph (SEM), atomic force microscopy (AFM) and optical spectroscopy. The present results indicate that the main defects exit in beta-BBO thin films are microcracks and hollow structure. The formation of microcrack is due to the lattice mismatch and the difference of thermal expansion coefficients between substrate and film. The hollow structure might be caused during the combination of islands, which formed in the initial stage. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
ZnO films were fabricated on LiGaO2 (0 0 1), (10 0) and (0 10) planes by RF magnetron sputtering. The structural, morphological and optical properties of as-grown ZnO films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectra and photoluminescence (PL) spectra. It is found that the orientation of ZnO films is strongly dependent on the substrate plane. [0 0 0 11, [1 (1) over bar 00] and [11 (2) over bar0] oriented ZnO films are deposited on LiGaO2 (001), (100) and (010), respectively. AFM shows the (0001) ZnO film consists of well-aligned regular hexagonal grains. Raman spectra reveal a tensile stress in the (0 0 0 1) ZnO film and a compressive stress in (110 0) and (112 0) ZnO films. PL spectra of all ZnO films exhibit only a near-band-edge UV emission peak. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aluminum nitride (AlN) films were prepared on gamma-LiAlO2 substrates by radio frequency (rf) magnetron sputtering. The influence of substrate temperature (T-s) and nitrogen (N-2) concentration on film growth was investigated. The X-ray diffraction (XRD) results reveal that highly c-axis oriented AlN films can be obtained in the temperature range from room temperature (RT) to 300 degrees C. A smoother surface and a crystalline quality decrease with increasing N-2 concentration have been observed by XRD and atomic force microscopy (AFM) for the films deposited at lower substrate temperature. On the contrary, the degradation of the surface smoothness and the higher crystalline quality can be observed for the films deposited at a higher substrate temperature with N-2-rich ambient. The growth mechanism which leads to different crystalline quality of the films is discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
On the basis of the Boltzmann equation, the authors propose a model that includes scattering from both film surfaces and grain boundaries, and have studied the quasiclassical electrical transport in metallic films. The in-plane electric conductivity of metallic films is obtained, and the theoretical results are shown to be in good agreement with experimental data. We also give the relation between temperature coefficient of resistivity and thickness of metallic films and make a comparison with experiment. <(C)> 2004 American Institute of Physics.
Resumo:
ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.