120 resultados para LIQUID-CRYSTAL MIXTURES
Resumo:
A liquid bridge of a floating half zone consisting of liquid mercury sealed in a glass tube with nitrogen atmosphere was used for the experiment of thermocapillary convection with a low Prandtl number liquid. A non-contacted diagnostic method was developed to monitor the surface flow and the surface oscillation. A growing surface film (or skin) is a crucial source to suppress thermocapillary convection, and is discussed in this paper. For the case of a mercury Liquid bridge, the critical Marangoni number was obtained as 900, and the oscillatory frequency was around 5 Hz.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was experimentally studied, and discussions were concentrated on the influence of liquid bridge volume on the onset of oscillation. Distributions of critical applied temperature difference and frequency depending on the volume of the liquid bridge were obtained, and there was a gap range of liquid volume which separated the curve of marginal stability into two parts for fixed rod diameter and aspect ratio. The results imply that the volume of the liquid bridge is a sensitive critical parameter for the onset of oscillation. The implication on the instability is also discussed in the present paper.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.
Resumo:
Uniform ZnSe nanowires are observed on the ablation crater on ZnSe crystal surface irradiated by femtosecond lasers in air, while other parts of the sample surface are not polluted. The nanowire growth rate is about 5 mu m/s, it is higher than that fabricated by chemical vapor deposition method by a factor of 10(4). The nanowire length and diameter can be controlled by varying laser pulse energy and pulse number. The formation mechanism is studied and found to be self-catalyzed vapor-liquid-solid process. (c) 2006 American Institute of Physics.
Resumo:
A finite-element model is employed to analysis the thermal environments in Temperature Gradient Technique (TGT) furnace during the growth of large-sized Nd:YAG crystal. The obtained results show that when the crucible is located at the lower position inside of the heater, a flatter solid-liquid interface is established, which makes it easier to obtain the core-free Nd:YAG crystal. Meanwhile, the lower crucible position can induce higher axial temperature gradient, which is beneficial to the release of latent heat. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Self-organized Al0.3Ga0.7As islands generated on the (100) facet are achieved by liquid phase epitaxy. Three particularly designed experimental conditions-partial oxidation, deficient solute and air quenching-result in defect-free nucleation. Micron-sized frustums and pyramids are observed by a scanning electron microscope. The sharp end of the tip has a radius of curvature less than 50 nm. It is proposed that such Al0.3Ga0.7As islands may be potentially serviceable in microscale and nanoscale fabrication and related spheres. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The growth of InAsxSb1-x films on (100) GaSb substrates by liquid-phase epitaxy (LPE) has been investigated and epitaxial InAs0.3Sb0.7 films with InAs0.9Sb0.09 buffer layers have been successfully obtained. The low X-ray rocking curve FHWM values of InAs0.3Sb0.7 layer shows the high quality of crystal-orientation structure. Hall measurements show that the highest electron mobility in the samples obtained is 2.9 x 10(4) cm(2) V-1 s(-1) and the carrier density is 2.78 x 10(16)cm(-3) at room temperature (RT). The In As0.3Sb0.7 films grown on (10 0) GaSb substrates exhibit excellent optical performance with a cut-off wavelength of 12 mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma (ICP) etching of InP in Cl-2/BCl3 gas mixtures is studied in order to achieve low-damage and high-anisotropy etching of two-dimensional InP/InGaAsP photonic crystal. The etching mechanisms are discussed and the effect of plasma heating on wafer during etching is analyzed. It is shown that the balance between the undercut originating from plasma heating and the redeposition of sputtering on the side-wall is crucial for highly anisotropic etching, and the balance point moves toward lower bias when the ICP power is increased. High aspect-ratio etching at the DC bias of 203 V is obtained. Eventually, photonic crystal structure with nearly 90 degrees side-wall is achieved at low DC bias after optimization of the gas mixture.
Resumo:
When liquid phase epitaxy regrowth at 780 degrees C for 2 h is applied to the samples after molecular beam epitaxy, a decrease of the threshold current density in strained InGaAs/GaAs quantum well lasers by a factor of 3 to 4 is obtained. We suggest that this improvement is attributed to the reduction of nonradiative centers associated with deep levels at the three regions of the active region, the graded layer and the cladding layer. Indeed, a significant reduction of deep center densities has been observed by using minority and majority carrier injection deep level transient spectroscopy measurements. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.
Resumo:
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.
Resumo:
The GaInAsSb/AlGaAsSb/GaSb heterostructures were grown by the liquid phase epitaxy (LPE) technique. The materials were characterized by means of optical microscopy, electroprobe microanalysis (EPMA), double-crystal X-ray diffraction, capacitance-voltage (C-V) and Van der Pauw measurments, infrared absorption spectra, photoluminescence and laser Raman scattering. The results show that the materials have fine surface morphology, low lattice mismatch and good homogeneity. Room-temperature light-emitting diodes with an emission wavelength of 2.2-mu-m were obtained by using the GaInAsSb/AlGaAsSb DH structures.
Resumo:
A liquid encapsulated melt Bone process has been developed for single crystal growth of GaAs. Single crystals of 40 mm long have been grown with this technique. To avoid unwanted nucleation events and maintain a constant crystal diameter, from top to bottom growth using a short zone with a convex zone surface was found to give the best results. An arsenic overpressure was used to in conjunction with a B2O3 encapsulant in order to suppress arsenic dissociation from the melt and maintain the stoichiometry of the crystal.