262 resultados para a-Si buffer layer
Resumo:
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural proper-ties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.
Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si(111) wafer
Resumo:
Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The stress states in unintentionally doped GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire, and their effects on optical properties of GaN films were investigated by means of room-temperature confocal micro-Raman scattering and photoluminescence techniques. Relatively large tensile stress exists in GaN epilayers grown on Si and 6H-SiC while a small compressive stress appears in the film grown on sapphire. The latter indicates effective strain relaxation in the GaN buffer layer inserted in the GaN/sapphire sample, while the 50-nm-thick AlN buffer adopted in the GaN/Si sample remains highly strained. The analysis shows that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films. Finally, a linear coefficient of 21.1+/-3.2 meV/GPa characterizing the relationship between the luminescent bandgap and the biaxial stress of the GaN films is obtained. (C) 2003 American Institute of Physics.
Resumo:
AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic performances of nc-Si:H/c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (V-OC) and fill factors (FF) of these structured solar cells. Short circuit current density (J(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si:H buffer layers inserted into n(+)-nc-Si:H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As DeltaE(C) increases, degradation of VOC and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombination centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AM1.5,100mW/cm(2), 0.40-1.1mum) has been obtained with BSF structure, idealized light-trapping effect(R-F=0, R-B=1) and no interface states.
Resumo:
High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ta is often used as a buffer layer in magnetic multilayers. In this study, Ta/Ni81Fe19/Ta multilayers were deposited by magnetron sputtering on sing-crystal Si with a 300-nm-thick SiO2 film. The composition and chemical states at the interface region of SiO2/Ta were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an 'inter-mixing layer" at the SiO2/Ta interface due to a thermodynamically favorable reaction: 15 SiO2 + 37 Ta = 6 Ta2O5 + 5 Ta5Si3. Therefore, the Ta buffer layer thickness used to induce NiFe (111) texture increases.
Resumo:
A new alternative method to grow the relaxed Ge0.24Si0.76 layer with a reduced dislocation density by ultrahigh vacuum chemical vapor deposition is reported in this paper. A 1000-Angstrom Ge0.24Si0.76 layer was first grown on a Si(100) substrate. Then a 500-Angstrom Si layer and a subsequent 5000-Angstrom Ge0.24Si0.76 overlayer followed. All these three layers were grown at 600 degrees C. After being removed from the growth system to air, the sample was first annealed at 850 degrees C for 30 min, and then was investigated by cross-sectional transmission electron microscopy and Rutherford backscattering spectroscopy. It is shown that the 5000-Angstrom Ge0.24Si0.76 thick over layer is perfect, and most of the threading dislocations are located in the embedded thin Si layer and the lower 1000-Angstrom Ge0.24Si0.76 layer. The relaxation ratio of the over layer is deduced to be 0.8 from Raman spectroscopy.
Resumo:
SiC was grown on Si (100) substrates oriented and off-oriented by 2-5 degrees towards [011] with simultaneous supply of C2H4 and S2H6 at 1050 degrees C. SiC formed during removal of oxide could be removed at 1150 degrees C. Twinned growth occurred on both oriented and off-oriented substrates during carbonization, but fewer twins formed on the off-oriented substrate than that on the oriented substrate. In SiC growth process, twinned growth continued on the off-oriented substrate whereas twinned growth stopped and single crystal SiC with double-domain (2 x 1) superstructure formed on the oriented substrate. SiC single crystal could grow on a carbonized twinned buffer layer. Obvious SiC LO and TO phonon modes were observed with Raman spectroscopy in the epilayer grown on the oriented substrate. The surface of the epilayer grown on the oriented substrate was smooth, while there was a high density of islands on the epilayer grown on the off-oriented substrate. The film grown on the oriented substrate is superior than that grown on the off-oriented substrate. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. The full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 mu m thick was 72 arcmin. and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. Al room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm.
Resumo:
Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.
Resumo:
A Schottky-based metal-semiconductor-metal photodetector is fabricated on 1 mu m-thick, crack-free GaN on Si (I 11) substrate using an optimized AlxGal-xN/AlN complex buffer layer. It exhibits a high responsivity of 4600A/W at 366nm which may be due to both a crack-free sample and high internal gain. The relationship between responsivity and bias voltage is also investigated. The experiment results indicate that the responsivity increases with the bias voltage and shows a tendency to saturate. (c) 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.