229 resultados para Mott Insulator
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:02:20Z No. of bitstreams: 1 Design and Simulation Analysis of Spot-Size Converter in Silicon-On-Insulator.pdf: 239163 bytes, checksum: 82db1386c266d0c07442a972348da08c (MD5)
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:08:51Z No. of bitstreams: 1 High-Q and High-extinction-ratio Microdisk Add-drop Filter with Grating Couplers in Silicon-on-Insulator.pdf: 662474 bytes, checksum: dbdd3fba410c875bd74a6d4823930a44 (MD5)
Resumo:
The semiconductor-metal transition of vanadium dioxide (VO2) thin films epitaxially grown on C-plane sapphire is studied by depositing Au nanoparticles onto the thermochromic films forming a metal-semiconductor contact, namely, a nano-Au-VO2 junction. It reveals that Au nanoparticles have a marked effect on the reduction in the phase transition temperature of VO2. A process of electron injection in which electrons flow from Au to VO2 due to the lower work function of the metal is believed to be the mechanism. The result may support the Mott-Hubbard phase transition model for VO2.
Resumo:
We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Resumo:
A novel silicon structure consisting of a silicon-on-defect layer (SODL), with enhanced surface Hall mobility in the surface layer on a buried defect layer (DL), has been discovered [J. Li, Nucl. Instr. and Meth. B59/60 (1991) 1053]. SODL material was formed by using proton implantation and subsequent two-step annealing. The implantation was carried out with a Varian 350D ion implanter. Based on the discovery, a standard measurement method (current-voltage curve method) was adopted to measure the true resistivity value of the DL in order to replace the spreading resistivity measurement by which the true resistivity in seriously defective silicon cannot be obtained. By adopting the current-voltage current method, the true resistivity value of the DL is measured to be 4.2 x 10(9) OMEGA cm. The SODL material was proved to be a silicon-on-insulator substrate.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.
Resumo:
读了《物理》杂志34卷第9期吴自勤和阎守胜两位同志写的关于N.F.Mott教授的纪念文章,很有感触,这使我回忆起Mott教授的一些往事.从这些往事中我深受教育,所以多年来未能忘怀。
Resumo:
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
Resumo:
The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.
Resumo:
A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.
Resumo:
In this paper, we present simulation results of an electrooptical variable optical attenuator (VOA) inte-grated in silicon-on-insulator waveguide. The device is functionally based on free carriers absorption toachieve attenuation. Beam propagation method (BPM) and two-dimensional semiconductor device simu-lation tool PISCES-Ⅱ were used to analyze the dc and transient characteristics of the device. The devicehas a response time (including rise time and fall time) less than 200 ns, much faster than the thermoopticand micro-electromechanical systems (MEMSs) based VOAs.
Resumo:
Integrated multimode interference (MMI) coupler based on silicon-on-insulator(SOI) has been becoming a kind of more and more attractive device in optical systems. SiO2thin cladding layers (<1.0 μm) can be usedin SOI waveguide due to the large index step be-tween Si and SiO2, making them compatible with VLSI technology. The design and fabrica-tion of MMI optical couplers and optical switches in SOI technology are presented in thepa-per. We demonstrated the switching time of 2 × 2 MMI-MZI thermo-optical switch is less than 20 μs:
Resumo:
An ultracompact 3-dB coupler is designed and fabricated in silicon-on-insulator,based on 12 line tapered multimode interference(MMI) coupler.Comparing with the conventional straigth MMI coupler,the device is-40% shorter in length.The device exhibits uniformity of 1.3dB and excess loss of 2.5dB