230 resultados para MOBILITY 2-DIMENSIONAL ELECTRON


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN structure are investigated by solving coupled Schrodinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) density will decrease with the thickness of the second barrier (AlyGa1-yN) once the AlN content of the second barrier is smaller than a critical value y(c), and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AlN content of the second barrier y(c) is exceeded. Our calculations also show that the critical AlN content of the second barrier y(c) will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetotransport properties of In-0.53 GaAs/In-0.52 AlAs high electron mobility transistor (HEMT) structures with different channel thickness of 10-35 nm have been investigated in magnetic fields up to 13 T at 1.4 K. Fast Fourier transform has been employed to obtain the subband density and mobility of the two-dimensional electron gas in these HEMT structures. We found that the thickness of channel does not significantly enhance the electron density of the two-dimensional electron gas, however, it has strong effect on the proportion of electrons inhabited in different subbands. When the size of channel is 20 nm, the number of electrons occupying the excited subband, which have higher mobility, reaches the maximum. The experimental values obtained in this work are useful for the design and optimization of InGaAs/InAlAs HEMT devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of annealed ohmic contact metals on the electron mobility of a two dimensional electron gas (2DEG) is investigated on ungated AlGaN/GaN heterostructures and AlGaN/GaN heterostructure field effect transistors (AlGaN/GaN HFETs). Current-voltage (I-V) characteristics for ungated AlGaN/GaN heterostructures and capacitance-voltage (C-V) characteristics for AlGaN/GaN HFETs are obtained, and the electron mobility for the ungated AlGaN/GaN heterostructure is calculated. It is found that the electron mobility of the 2DEG for the ungated AlGaN/GaN heterostructure is decreased by more than 50% compared with the electron mobility of Hall measurements. We propose that defects are introduced into the AlGaN barrier layer and the strain of the AlGaN barrier layer is changed during the annealing process of the source and drain, causing the decrease in the electron mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with a high-mobility GaN thin layer as a channel are grown on high resistive 6H-SiC substrates by metalorganic chemical vapor deposition. The HEMT structure exhibits a typical two-dimensional electron gas (2DEG) mobility of 1944cm2/(V · s) at room temperature and 11588cm2/(V· s) at 80K with almost equal 2DEG concentrations of about 1.03 × 1013 cm-2 High crystal quality of the HEMT structures is confirmed by triple-crystal X-ray diffraction analysis. Atomic force microscopy measurements reveal a smooth AlGaN surface with a root-mean-square roughness of 0. 27nm for a scan area of 10μm × 10μm. HEMT devices with 0.8μm gate length and 1.2mm gate width are fabricated using the structures. A maximum drain current density of 957mA/mm and an extrinsic transconductance of 267mS/mm are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of AlxGa1-xN/GaN heterostructures was calculated. Based on the model of treating dislocation as a charged line, an exponentially varied potential was adopted to calculate the mobility. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data, and we obtained a good fitting between the calculated and experimental results. It was found that the measured mobility is dominated by interface roughness and dislocation scattering at low temperatures if dislocation density is relatively high (>10(9) cm(-2)), and accounts for the nearly flattening-out behavior with increasing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/GaN heterostructure using unintentionally doped AlN/GaN superlattices (SLs) as barrier layer is grown on C-plane sapphire by metal organic vapor deposition (MOCVD). Compared with the conventional Si-doped structure, electrical property is improved. An average sheet resistance of 287.1 Omega/square and high resistance uniformity of 0.82% are obtained across the 2-inch epilayer wafer with an equivalent Al composition of 38%. Hall measurement shows that the mobility of two-dimensional electron gas (2DEG) is 1852 cm(2)/V s with a sheet carrier density of 1.2 x 10(13) cm(-2) at room temperature. The root mean square roughness (RMS) value is 0.159 nm with 5 x 5 mu m(2) scan area and the monolayer steps are clearly observed. The reason for the property improvement is discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality AlGaN/GaN high electron mobility transistor (HEMT) structures were grown by metalorganic chemical vapor deposition (MOCVD) on 2-in. sapphire substrates. Two-dimensional electron gas (2DEG) mobility of 1410 cm(2)/Vs and concentration of 1.0X10(13) CM-2 are obtained at 295 K from the HEMT structures, whose average sheet resistance and sheet resistance uniformity are measured to be about 395 Omega/sq and 96.65% on 2-in. wafers, respectively. AlGaN/GaN HEMTs with 0.8 mu m gate length and 0.2 mm gate width were fabricated and characterized using the grown HEMT structures. Maximum current density of 0.9 A/ mm, peak extrinsic transconductance of 290 mS/mm, unity cutoff frequency (f(T)) of 20 GHz and maximum oscillation frequency (f(max) of 46 GHz are achieved. These results represent significant improvements over the previously fabricated devices with the same gate length, which are attributed to the improved performances of the MOCVD-grown HEMT structures. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unintentionally doped high-Al-content Al0.45Ga0.55N/GaN high electron mobility transistor (HEMT) structures with and without AlN interfacial layer were grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. The effects of AlN interfacial layer on the electrical properties were investigated. At 300 K, high two-dimensional electron gas (2DEG) density of 1.66 x 10(11) cm(-2) and high electron mobility of 1346 cm(2) V-1 s(-1) were obtained for the high Al content HEMT structure with a 1 nm AlN interfacial layer, consistent with the low average sheet resistance of 287 Omega/sq. The comparison of HEMT wafers with and without AlN interfacial layer shows that high Al content AlGaN/AlN/GaN heterostructures are potential in improving the electrical properties of HEMT structures and the device performances. (c) 2006 Elsevier B.V. All rights reserved.