308 resultados para offshore well
Resumo:
A theory of scattering by charged dislocation lines in a quasitriangle potential well of AlxGa1-xN/GaN heterostructures is developed. The dependence of mobility on carrier sheet density and dislocation density is obtained. The results are compared with those obtained from a perfect two-dimensional electron gas and the reason for discrepancy is given.
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report a 1.5-mu m InGaAs/GaAs quantum well laser diode grown by molecular beam epitaxy on InGaAs metamorphic buffers. At 150 K, for a 1500 x 10 mu m(2) ridge waveguide laser, the lasing wavelength is centred at 1.508 mu m and the threshold current density is 667 A/cm(2) under pulsed operation. The pulsed lasers can operate up to 286 K.
Resumo:
Both the peak position and linewidth in the photoluminescence spectrum of the InAs/GaAs quantum dots usually vary in an anomalous way with increasing temperature. Such anomalous optical behaviour is eliminated by inserting an In0.2Ga0.8As quantum well below the quantum dot layer in molecular beam epitaxy. The insensitivity of the photoluminescence spectra to temperature is explained in terms of the effective carrier redistribution between quantum dots through the In0.2Ga0.8As quantum well.
Resumo:
This paper studies the dependence of I - V characteristics on quantum well widths in AlAs/In0.53Ga0.47As and AlAs/In0.53Ga0.47As/InAs resonant tunnelling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunnelling diodes are continually decreasing with increasing well width.
Resumo:
The electroluminescence efficiency at room temperature and low temperature (15 K) in a wide-narrow-well InGaN/GaN light-emitting diode with a narrow last well (1.5 nm) and a narrow next-to-last barrier (5 nm) is investigated to study the efficiency droop phenomenon. A reduced droop in the wide wells and a reduced droop at low temperatures reveals that inferior hole transportation ability induced Auger recombination is the root for the droop at high excitation levels.
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
Beating patterns in longitudinal resistance caused by the symmetric and antisymmetric states were observed in a heavily doped InGaAs/InAlAs quantum well by using variable temperature Hall measurement. The energy gap of symmetric and antisymmetric states is estimated to be 4meV from the analysis of beating node positions. In addition, the temperature dependences of the subband electron mobility and concentration were also studied from the mobility spectrum and multicarrier fitting procedure.
Resumo:
We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.
Resumo:
The binding energy of an exciton bound to a neutral donor (D-0,X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition, we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.
Resumo:
A novel type of integrated InGaAsP superluminescent light source was fabricated based on the tilted ridge-waveguide structure with selective-area quantum well (QW) intermixing. The bandgap structure along the length of the device was modified by impurity free vacancy diffusion QW intermixing, The spectral width was broadened from the 16 nm of the normal devices to 37 nm of the QW intermixing enhanced devices at the same output power level. High superluminescent power (210 mW) was obtained under pulsed conditions with a spectral width of 37 nm.
Resumo:
Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800degreesC for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1eV, respectively.
Resumo:
Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.
Resumo:
We observed a transition from film to vertically well-aligned nanorods for ZnO grown on sapphire (0001) substrates by metalorganic chemical vapor deposition. A growth mechanism was proposed to explain such a transition. Vertically well-aligned homogeneous nanorods with average diameters of similar to 30, 45, 60, and 70 nm were grown with the c-axis orientation. Raman scattering showed that the E-2 (high) mode shifted to high frequency with the decrease of nanorod diameters, which revealed the dependence of nanorod diameters on the stress state. This dependence suggests a stress-driven diameter-controlled mechanism for ZnO nanorod arrays grown on sapphire (0001) substrates. (c) 2005 American Institute of Physics.
Resumo:
Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.