60 resultados para growth hormone (GH)
Resumo:
Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.
Resumo:
In this paper, we investigated the Raman scattering and photoluminescence of Zn1-xMnxO nanowires synthesized by the vapor phase growth. The changes of E-2(High) and A(1(LO)) phonon frequency in Raman spectra indicate that the tensile stress increases while the free carrier concentration decreases with the increase of manganese. The Raman spectra exited by the different lasers exhibit the quantum confinement effect of Zn1-xMnxO nanowires. The photoluminescence spectra reveal that the near band emission is affected by the content of manganese obviously. The values Of I-UV/G decrease distinctly with the manganese increase also demonstrate that more stress introduced with the more substitution of Mn for Zn.
Resumo:
Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.
Resumo:
Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Stoichiometric ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powder on the (100) silicon substrate coated with a gold film of 2 nm in thickness. The microstructures and the chemical compositions of the as-grown nanowires have been investigated by means of electron microscopy, the energy dispersive spectroscopy, and Raman spectroscopy. The results reveal that the as-grown materials consist of ZnSe nanowires with diameters ranging from 5 to 50 nm. Photoluminescence of the sample demonstrates a strong green emission from room temperature down to 10 K. This is attributed to the recombination of electrons from conduction band to the medium deep Au acceptors. (C) 2003 American Institute of Physics.
Resumo:
Homoepitaxial growth of SiC on a Si-face (0 0 0 1) GH-SIC substrate has been performed in a modified gas-source molecular beam epitaxy system with Si2H6 and C2H4 at temperatures ranging 1000 1450 degreesC while keeping a constant SiC ratio (0.7) in the gas phase. X-ray diffraction patterns, Raman scattering measurements. and low-temperature photoluminescence spectra showed single-crystalline SiC. Mesa-type SiC p-n junctions were obtained on these epitaxial layers, and their I-V characteristics are presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A CeO2 film with a thickness of about 80nm was deposited by a mass-analysed low-energy dual ion beam deposition technique on an Si(111) substrate. Reflection high-energy electron diffraction and x-ray diffraction measurements showed that the film is a single crystal. The tetravalent state of Ce in the film was confirmed by x-ray photoelectron spectroscopy measurements, indicating that stoichiometric CeO2 was formed. Violet/blue light emission (379.5 nm) was observed at room temperature, which may be tentatively explained by charge transitions from the 4f band to the valence band of CeO2.
Resumo:
InAs quantum dots inserted at the middle of a GaAs quantum well structure have been investigated by transmission electron microscopy and scanning transmission electron microscopy. We find that the growth condition of the overlayer on the InAs dots can lead to drastic changes in the structure of the dots. We attribute the changes to a combination of factors such as preferential growth of the overlayer above the wetting layers because of the strained surfaces and to the thermal instability of the InAs dots at elevated temperature. The result suggests that controlled sublimation, through suitable manipulation of the overlayer growth conditions, can be an effective tool to improve the structure of the self-organized quantum dots and can help tailor their physical properties to any specific requirements of the device applications. (C) 1998 American Institute of Physics.
Resumo:
The growth of wurtzite GaN by low-pressure metalorganic vapor-phase epitaxy on (1 1 1) magnesium aluminate (MgAl2O4) substrates have been studied. The morphological, crystalline, electrical and optical properties are investigated. A p-n junction GaN LED was fabricated on the MgAl2O4 substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.
Resumo:
Homoepitaxial growth of SiC on a Si-face (0 0 0 1) GH-SIC substrate has been performed in a modified gas-source molecular beam epitaxy system with Si2H6 and C2H4 at temperatures ranging 1000 1450 degreesC while keeping a constant SiC ratio (0.7) in the gas phase. X-ray diffraction patterns, Raman scattering measurements. and low-temperature photoluminescence spectra showed single-crystalline SiC. Mesa-type SiC p-n junctions were obtained on these epitaxial layers, and their I-V characteristics are presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The growth of wurtzite GaN by low-pressure metalorganic vapor-phase epitaxy on (1 1 1) magnesium aluminate (MgAl2O4) substrates have been studied. The morphological, crystalline, electrical and optical properties are investigated. A p-n junction GaN LED was fabricated on the MgAl2O4 substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The human epidermal growth factor (hEGF) is a small single-chain polypeptide of 53 amino acid residues. It can stimulate the proliferation of many cell types, mainly those of epidermal and epithelial tissues both in vivo and in vitro. A vector pRL-hEGF was constructed using plasmids pRL-489 and pUC-hEGF. The synthetic hEGF gene was recombined into the downstream of strong promoter psbA in plasmids pRL-489. Then, the vector was introduced into Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120 by triparental conjugative transfer. The transformation was confirmed by PCR amplification. The pRL-hEGF is thought to be retained as a plasmid form in the transgenic Anabaena sp. PCC 7120, since it can be recovered. However, it has been integrated into the chromosome of Synechococcus sp. PCC 7002 as there is no duplication origin in the pRL-hEGF in this cyanobacterium. and plasmid cannot be isolated from the Synechococcus sp. PCC 7002 either. The radioimmunoassay (RIA) proved that the hEGF gene has been expressed as the protein existed in these two strains of transgenic cyanobacteria, and the hEGF protein in Anabaena sp. PCC 7002 could be secreted into the medium.
Resumo:
The effect of temperature, salinity, nitrogen, culture density and depth on the growth of Gracilaria tenuistipitata were investigated between April 1985 and March 1986 in outdoor ponds in Guangxi Province, South China. The mean annual growth rate was 2.4% per day. Under favourable temperatures of 20-30-degrees-C, daily growth rate may reach as high as 3.3%. Salinity had an obvious effect on growth and photosynthesis and growth peaked at 21 parts per thousand, with a broad plateau between 7-27 parts per thousand. Growth experiments showed that a total nitrogen (NH4-N plus NO3-N) concentration of 4 muM was sufficient to enable the plants to maintain a daily growth rate of 2.7%. The best growth of the plant was obtained at a culture density of 0.5-1 kg M-2 and a culture depth of 30 cm in the pond.