86 resultados para NEGATIVE THERMAL-EXPANSION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent letter, Hsieh reported the growth of high-quality Ge epilayers with a SiGe buffer thickness of only 0.45 mu m, a surface root-mean-square roughness of less than 0.4 nm, and a threading dislocation of 7.6 x 10(6) cm(-2) on Si+ pre-ion-implantation Si substrate utilizing of strain relaxation enhancement by point defects and interface blocking of the dislocations. Our comment has focused on x-ray diffraction data shown in Fig. 3 of Ref. 1. We demonstrate that the strain in Ge epilayers is tensile, rather than compressive as misunderstood by the authors. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3003873]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Raman spectroscopy technique has been performed to investigate the stress induced in as-grown silicon-on-sapphire (SOS), solid-phase-epitaxy (SPE) re-grown SOS, and Si/gamma-Al2O3/Si double-heteroepitaxial thin films. It was demonstrated that the residual stress in SOS film, arising from mismatch and difference of thermal expansion coefficient between silicon and sapphire, was reduced efficiently by SPE process, and that the stress in Si/gamma-Al2O3/Si thin film is much smaller than that of as-grown SOS and SPE upgraded SOS films. The stress decrease for double heteroepitaxial film Si/gamma-Al2O3/Si mainly arises from the smaller lattice mismatching of 2.4% between silicon top layer and the gamma-Al2O3/Si epitaxiial composite substrate, comparing with the large lattice mismatch of 13% for SOS films. It indicated that gamma-Al2O3/Si as a silicon-based epitaxial substrate benefits for reducing the residual stress for further growth of silicon layer, compared with on bulk sapphire substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface morphology of GaN grown by MOCVD on GaN/Si template was studied. Rough morphology and deep pinhole defects on some surface areas of the samples were observed and studied. The formation of rough morphology is possibly related to Ga-Si alloy produced due to poor thermal stability of template at high temperature. The deep pinhole defects generated are deep down to the surface of MBE-grown GaN/Si template. The stress originated from the large thermal expansion coefficient difference between GaN and Si may be related to the formation of the pinhole defects. The surface morphology of the GaN can be improved by optimizing the GaN/Si template and decreasing the growth temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extended technique derived from triple-axis diffraction setup was proposed to measure lattice parameters of cubic GaN(c-GaN) films. The fully relaxed lattice parameters of c-GaN are determined to be 4.5036+0.0004 Angstrom, which is closer to the values of a hypothetical perfect crystal. The speculated zero setting correction (Deltatheta) is very slight and within the range of the accuracy of measurement. Additionally, we applied this method to analyze strain of four different kinds of c-GaN samples. It is found that in-plane strain caused by large lattice mismatch and thermal expansion coefficients mismatch directly influence the epilayer growth at high temperatures, indicating that the relaxation of tensile strain after thermal annealing helps to improve the crystalline quality of c-GaN films and optical properties. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study of the characteristics of undoped GaN films, grown on either vicinal or nominal flat SiC (0001) substrates by molecular beam epitaxy, has been carried out using photoluminescence and Raman scattering techniques. The I I K photoluminescence spectra of the GaN film grown on the vicinal SiC (0001) substrate show a strong and sharp near-bandgap peak (full width at half maximum (FWHM) similar to 16 meV). This feature contrasts with that of the GaN film grown on the nominal flat SiC (0001) substrate where the I I K photoluminescence spectra exhibit the near-bandgap peak (FWHM similar to 25 meV) and the intensity is approximately seven times weaker than that of the vicinal film sample. The redshift of the near-bandgap peak associated with excitons bound to shallow donors is related to the stress caused by both the lattice mismatch and the thermal expansion coefficient difference between GaN and SiC substrates. The measured thermal activation energy of the shallow donor of 33.4 meV is determined by using an Arrhenius plot of the near-bandgap luminescence versus I IT from the slope of the graph at high temperature. The temperature dependence of the FWHM of the near-bandgap luminescence has also been studied. The Raman scattering measurements from the vicinal film reveal that the E-2 phonon peak is strengthened and the A(1)(LO) phonon peak is shifted towards the low-frequency side with enhanced intensity, in comparison to that from the nominal flat film, suggesting a reduction in the density of defects and a lower free carrier concentration in the vicinal GaN film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman spectra of ion-implanted highly oriented pyrolytic graphite (HOPG) are reported, in which an additional mode at 1083 cm(-1) and three doublet structures in the positions of similar to 1350, similar to 2450, and similar to 2710 cm(-1) are revealed. Noticeable frequency shifts are observed for all the Raman bands between the spectra excited with different laser powers, which are interpreted as the pure temperature effect and a downshift in the C-C stretching frequency induced by the thermal expansion. Moreover, the pure temperature effect (d omega/dT)(V) without anharmonic contribution is achieved in pristine HOPG. The results suggest that the pure temperature effect without anharmonic contribution plays an important role in the frequency shifts with temperature. (C) 1999 American Institute of Physics. [S0003-6951(99)01313-3].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface morphology of GaN grown by MOCVD on GaN/Si template was studied. Rough morphology and deep pinhole defects on some surface areas of the samples were observed and studied. The formation of rough morphology is possibly related to Ga-Si alloy produced due to poor thermal stability of template at high temperature. The deep pinhole defects generated are deep down to the surface of MBE-grown GaN/Si template. The stress originated from the large thermal expansion coefficient difference between GaN and Si may be related to the formation of the pinhole defects. The surface morphology of the GaN can be improved by optimizing the GaN/Si template and decreasing the growth temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman and photoreflectivity spectra of gallium nitride (GaN) films grown on (0001) oriented sapphire substrates by gas source molecular beam epitaxy (GSMBE) have been investigated. The Raman spectra showed the presence of the E-2(high) mode and a shift in the wavenumber of this mode with respect to the GaN epilayer thickness. The Raman scattering results suggest the presence of stress due to lattice and thermal expansion misfit in the films, and also indicate that the buffer layer play an important role in the deposition of high quality GaN layers. The residual stress changes from tensile to compressive as the epilayer thickness increases. Samples subjected to anneal cycles showed an increase in the mobility due probably to stress relaxation as suggested by an observed shift in the E-2(high) mode in the Raman spectra after annealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In conjunction with ANSYS, we use the finite element method to analyze the bonding stresses of Si/GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress,and peeling stress,taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wafer bonding is regardless of lattice mismatch in the integration of dissimilar semiconductor materials. This technology differs from the heteroepitaxy mainly in the mechanism of generating dislocations at the interface. A model of dislocations at the bonded interface is proposed in this paper. Edge-like dislocations, which most efficiently relax the strain, are predominant at the bonded interface. But the thermal stress associated with large thermal expansion misfit may drive dislocations away from the bonded interface upon cooling.