414 resultados para Light Emitting Diode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic light emitting diodes using a mixed layer of electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride and electron donor copper phthalocyanine (PTCDA:CuPc) on indium tin oxide (ITO) anodes were fabricated. The device properties were found to be strongly dependent on the thickness of the PTCDA:CuPc film: both the power efficiency and the driving voltage of the device were optimized with a thickness of PTCDA:CuPc ranging from 10 to 20 nm. As compared to the conventional ITO/CuPc hole injection structure, the ITO/PTCDA:CuPc hole injection structure could remarkably enhance both the luminance and the power efficiencies of devices. A mechanism of static-induced, very efficient hole-electron pairs generation in mixed PTCDA:CuPc films was proposed to explain the experimental phenomena. The structural and optical properties of PTCDA:CuPc film were examined as well. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic light emitting diodes with an interface of organic acceptor 3-, 4-, 9-, 10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5 nm CuPc hole injection layer, the device using an interface of 10 nm PTCDA and 5 rim CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two silicon light emitting devices with different structures are realized in standard 0.35 mu m complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6 nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/Cm-2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance violet light-emitting diodes (LEDs) with InGaN/AlInGaN multiple quantum well (MQW) active regions were grown by metal organic chemical vapor deposition (MOCVD). The interface flatness of the InGaN/AlInGaN MQWs and the emission efficiency of the LED are firstly improved with increasing Al content in the AlInGaN barrier layer, and then degraded as Al content increases further, being optimal when Al content is 0.12. Similarly, the result is optimized if the indium content is approximately 2.5% in the AlInGaN barrier layer. The mechanisms which have influences on the radiative efficiency when the Al content increases are discussed. A high output power of 7.3 mW for the violet LED at 20 mA current has been achieved. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of two kinds of InGaN/GaN quantum-wells light emitting diodes, one of which was doped with Si in barriers while the other was not, are comparatively investigated using time-integrated photoluminescence and time-resolved photoluminescence techniques. The results clearly demonstrate the coexistence of the band gap renormalization and phase-space filling effect in the structures with Si doped barriers. It is surprisingly found that photogenerated carriers in the intentionally undoped structures decay nonexponentially, whereas carriers in the Si doped ones exhibit a well exponential time evolution. A new model developed by O. Rubel, S. D. Baranovskii, K. Hantke, J. D. Heber, J. Koch, P. Thomas, J. M. Marshall, W. Stolz, and W. H. Ruhle [J. Optoelectron. Adv. Mater. 7, 115 (2005)] was used to simulate the decay curves of the photogenerated carriers in both structures, which enables us to determine the localization length of the photogenerated carriers in the structures. It is found that the Si doping in the barriers not only leads to remarkable many-body effects but also significantly affects the carrier recombination dynamics in InGaN/GaN layered heterostructures. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stoichiometric ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powder on the (100) silicon substrate coated with a gold film of 2 nm in thickness. The microstructures and the chemical compositions of the as-grown nanowires have been investigated by means of electron microscopy, the energy dispersive spectroscopy, and Raman spectroscopy. The results reveal that the as-grown materials consist of ZnSe nanowires with diameters ranging from 5 to 50 nm. Photoluminescence of the sample demonstrates a strong green emission from room temperature down to 10 K. This is attributed to the recombination of electrons from conduction band to the medium deep Au acceptors. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(lll) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1 degrees, while the minimum is 0.353 degrees. This result is better than the minimum FWHM (about 2 degrees) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(lll).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of plasma induced damage in different conditions of ICP and PECVD processes on LEDs were presented. For ICP mesa etch, in an effort to confirm the effects of dry etch damage on the optical properties of p-type GaN, a photoluminescence (PL) measurement was investigated with different rf chuck power. It was founded the PL intensity of the peak decreased with increasing DC bias and the intensity of sample etched at a higher DC bias of -400V is less by two orders of magnitude than that of the as-grown sample. Meanwhile, In the IN curve for the etched samples with different DC biases, the reverse leakage current of higher DC bias sample was obviously degraded than the lower one. In addition, plasma induced damage was also inevitable during the deposition of etch masks and surface passivation films by PECVD. The PL intensity of samples deposited with different powers sharply decreased when the power was excessive. The PL spectra of samples deposited under the fixed condition with the different processing time were measured, indicating the intensity of sample deposited with a lower power did not obviously vary after a long time deposition. A two-layer film was made in order to improve the compactness of sparse dielectric film deposited with a lower power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated with standard 0.35 mu m CMOS technology. This OEIC circuit consists of light emitting diodes (LED), silicon dioxide waveguide, photodiodes and receiver circuit. The silicon LED operates in reverse breakdown mode and can be turned on at 8.5V 10mA. The silicon dioxide waveguide is composed of multiple layers of silicon dioxide between different metals layers. A two PN-junctions photodetector composed of n-well/p-substrate junction and p(+) active implantation/n-well junction maximizes the depletion region width. The readout circuitry in pixels is exploited to handle as small as 0.1nA photocurrent. Simulation and testing results show that the optical emissions powers are about two orders higher than the low frequency detectivity of silicon CMOS photodetcctor and receiver circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silicon light emitting device is designed and simulated. It is fabricated in 0.6 mum standard CMOS technology. The device can give more than 1 muW optical power of visible light under reverse breakdown. The device can be turned on at a bias of 0.88 V and work in a large range of voltage: 1.0-6.0 V The external electrical-optical conversion efficiency is more than 10(-6). The optical spectrum of the device is between 540-650 nm, which have a clear peak near 580 nm. The emission mechanism can be explained by a hot carrier direct recombination model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report highly efficient and stable organic light-emitting diodes (OLEDs) with MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) as hole injection layer (HIL). A green OLED with structure of ITO/20 wt% MoO3: PTCDA/NPB/Alq(3)/LiF/Al shows a long lifetime of 1012 h at the initial luminance of 2000 cd/m(2), which is 1.3 times more stable than that of the device with MoO3 as HIL. The current efficiency of 4.7 cd/A and power efficiency of 3.7 lm/W at about 100 cd/m(2) have been obtained. The charge transfer complex between PTCDA and MoO3 plays a decisive role in improving the performance of OLEDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n-ZnO/p-GaN heterojunction light-emitting diodes with and without a sandwiched AlN layer were fabricated. The electroluminescence (EL) spectrum acquired from the n-ZnO/p-GaN displays broad emission at 650 nm originating from ZnO and weak emission at 440 nm from GaN, whereas the n-ZnO/AlN/p-GaN exhibits strong violet emission at 405 nm from ZnO without GaN emission. The EL intensity is greatly enhanced by inserting a thin AlN intermediate layer and it can be attributed to the suppressed formation of the GaOx interfacial layer and confinement effect rendered by the AlN potential barrier layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tandem organic light-emitting diodes (OLEDs) with an effective charge-generation connection structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq(3))/Molybdenum oxide (MoO3)-doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) were presented. At a current density of 50 mA/cm(2), the current efficiency of the tandem OLED with two standard NPB/Alq(3) emitting units is 4.2 cd/A, which is 1.7 times greater than that of the single EL device. The tandem OLED with the similar connection structure of Mg-doped PTCDA/MoO3-doped PTCDA was also fabricated and the influences of the different connection units on the current efficiency of the tandem OLED were discussed as well.