Monolithic Integration of Light Emitting Diodes, Photodetector and Receiver Circuit in Standard CMOS Technology


Autoria(s): Huang BJ; Xu Zhang; Zan Dong; Wei Wang; Chen HD
Data(s)

2008

Resumo

A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated with standard 0.35 mu m CMOS technology. This OEIC circuit consists of light emitting diodes (LED), silicon dioxide waveguide, photodiodes and receiver circuit. The silicon LED operates in reverse breakdown mode and can be turned on at 8.5V 10mA. The silicon dioxide waveguide is composed of multiple layers of silicon dioxide between different metals layers. A two PN-junctions photodetector composed of n-well/p-substrate junction and p(+) active implantation/n-well junction maximizes the depletion region width. The readout circuitry in pixels is exploited to handle as small as 0.1nA photocurrent. Simulation and testing results show that the optical emissions powers are about two orders higher than the low frequency detectivity of silicon CMOS photodetcctor and receiver circuit.

A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated with standard 0.35 mu m CMOS technology. This OEIC circuit consists of light emitting diodes (LED), silicon dioxide waveguide, photodiodes and receiver circuit. The silicon LED operates in reverse breakdown mode and can be turned on at 8.5V 10mA. The silicon dioxide waveguide is composed of multiple layers of silicon dioxide between different metals layers. A two PN-junctions photodetector composed of n-well/p-substrate junction and p(+) active implantation/n-well junction maximizes the depletion region width. The readout circuitry in pixels is exploited to handle as small as 0.1nA photocurrent. Simulation and testing results show that the optical emissions powers are about two orders higher than the low frequency detectivity of silicon CMOS photodetcctor and receiver circuit.

zhangdi于2010-03-09批量导入

zhangdi于2010-03-09批量导入

IEEE Beijing Sect.; Chinese Inst Elect.; IEEE Electron Devices Soc.; IEEE EDS Beijing Chapter.; IEEE Solid State Circuits Soc.; IEEE Circuites & Syst Soc.; IEEE Hong Kong EDS, SSCS Chapter.; IEEE SSCS Beijing Chapter.; Japan Soc Appl Phys.; Elect Div IEEE.; URSI Commiss D.; Inst Elect Engineers Korea.; Assoc Asia Pacific Phys Soc.; Peking Univ, IEEE EDS Student Chapter.

[Huang, BeiJu; XuZhang; ZanDong; WeiWang; Chen, HongDa] Chinese Acad Sci, State Key Lab Integrated Optoelect, Inst Semicond, Beijing 100083, Peoples R China

IEEE Beijing Sect.; Chinese Inst Elect.; IEEE Electron Devices Soc.; IEEE EDS Beijing Chapter.; IEEE Solid State Circuits Soc.; IEEE Circuites & Syst Soc.; IEEE Hong Kong EDS, SSCS Chapter.; IEEE SSCS Beijing Chapter.; Japan Soc Appl Phys.; Elect Div IEEE.; URSI Commiss D.; Inst Elect Engineers Korea.; Assoc Asia Pacific Phys Soc.; Peking Univ, IEEE EDS Student Chapter.

Identificador

http://ir.semi.ac.cn/handle/172111/8282

http://www.irgrid.ac.cn/handle/1471x/65827

Idioma(s)

英语

Publicador

IEEE

345 E 47TH ST, NEW YORK, NY 10017 USA

Fonte

Huang, BJ;XuZhang;ZanDong;WeiWang;Chen, HD.Monolithic Integration of Light Emitting Diodes, Photodetector and Receiver Circuit in Standard CMOS Technology .见:IEEE .2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY,345 E 47TH ST, NEW YORK, NY 10017 USA ,2008,VOLS 1-4: 985-987

Palavras-Chave #光电子学 #SILICON
Tipo

会议论文