85 resultados para Archdiocese Archive in Gniezno


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li [Appl. Phys. Lett. 91, 232115 (2007)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reported the synthesis of CdS semiconductor nanoparticles using a simple one-pot reaction by thermolysis of cadmium acetylacetonate in dodecanethiol. Optical measurements of the as-obtained CdS nanoparticles revealed that their optical properties were closely related to surface effects. Based upon the cocktail of poly (N-vinylcarbazole) (PVK) and CdS nanoparticles, a bistable device was fabricated by a simple solution processing technique. Such a device exhibited a remarkable electrical bistability, which was attributed to the electric field-assisted charge transfer between PVK and the CdS nanoparticles capped by dodecaethiol. The conduction mechanism changed from an injection-controlled current to a bulk-controlled one during switching from OFF-state to ON-state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The output characteristics of micro-solar cell arrays are analyzed on the basis of a modified model in which the shunt resistance between cell lines results in current leakage. The modification mainly consists of adding a shunt resistor network to the traditional model. The obtained results agree well with the reported experimental results. The calculation results demonstrate that leakage current in substrate affects seriously the performance of GaAs micro- solar cell arrays. The performance of arrays can be improved by reducing the number of cells per line. In addition, at a certain level of integration, an appropriate space occupancy rate of the single cell is recommended for ensuring high open circuit voltages, and it is more appropriate to set the rates at 80%-90% through the calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a triangular triple quantum dots (TTQDs) ring with three terminals, when lowering one of the dot-lead coupling to realize the left-right (L-R) reflection symmetry coupling, the internal C-upsilon of the TTQDs is well preserved in the absence of many-body effect for the symmetric distribution of the dot-lead coupling on the molecular orbits. In the presence of Kondo effect, the decrement of one of the dot-lead couplings suppresses the inter-dot hopping. This happens especially for the coupled quantum dot (QD), which decouples with the other two ones gradually to form a localized state near the Fermi level As a result, the internal dynamic symmetry of the TTQDs ring is reduced to L-R reflection symmetry, and simultaneously, the linear conductance is lifted for the new forming molecular orbit near the Fermi level

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wurtzite ZnO has many potential applications in optoelectronic devices, and the hydrogenated ZnO exhibits excellent photoelectronic properties compared to undoped ZnO; however, the structure of H-related defects is still unclear. In this article, the effects of hydrogen-plasma treatment and subsequent annealing on the electrical and optical properties of ZnO films were investigated by a combination of Hall measurement, Raman scattering, and photoluminescence. It is found that two types of hydrogen-related defects, namely, the interstitial hydrogen located at the bond-centered (H-BC) and the hydrogen trapped at a O vacancy (H-O), are responsible for the n-type background conductivity of ZnO films. Besides introducing two hydrogen-related donor states, the incorporated hydrogen passivates defects at grain boundaries. With increasing annealing temperatures, the unstable H-BC atoms gradually diffuse out of the ZnO films and part of them are converted into H-O, which gives rise to two anomalous Raman peaks at 275 and 510 cm(-1). These results help to clarify the relationship between the hydrogen-related defects in ZnO described in various studies and the free carriers that are produced by the introduction of hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and theoretical study of the self-heating effect on the two-state lasing behaviors in 1.3-mu m self-assembled InAs-GaAs quantum dot (QD) lasers is presented. Lasing spectra under different injected currents, light-current (L-I) curves measured in continuous and pulsed regimes as well as a rate-equation model considering the current heating have been employed to analyze the ground-state (GS) and excited-state (ES) lasing processes. We show that the self-heating causes the quenching of the GS lasing and the ES lasing by the increased carrier escape rate and the reduced maximum modal gain of GS and ES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculations, that the exciton Aharonov-Bohm effect may account for the observed effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ballistic transport of Rashba electrons in a straight structure in two-dimensional electron gas is studied. It is found that there is no mixing between the wave functions of spin up and spin down states, and the transfer matrix is independent for the spin in every interface. The influence of the structure and Rashba coefficient on the electron transport is investigated. Our results indicate that the transmission probabilities are independent of the sign and magnitude of the Rashba coefficient and it depends on the shape of the structure, especially the stub width. The antiresonance is found, where the quasiconfined state is formed in the center part of the structure.