262 resultados para RU(001)
Resumo:
Thickness effect of immiscible alloy InAlAs as matrix layer on the morphology of InAs nanostructure grown on InAlAs/InP (0 0 1) by solid-source molecular-beam epitaxy has been studied. Experiments demonstrate that InAs nanostructure grown on thin InAlAs matrix layer forms randomly distributed quantum dot, whereas, grown on thick InAlAs matrix layer forms one-dimension ordered mixture of quantum wire and quantum dot. This drastic modification in the nanostructure morphology is attributed to the generation of composition modulation in the immiscible InAlAs alloy with the increase of the layer thickness. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
First, GaSb epilayers were grown on (001) GaAs substrates by molecular beam epitaxy. We determined that the GaSb layers had very smooth surfaces using atomic force microscopy. Then, very short period InAs/ GaSb superlattices (SLs) were grown on the GaSb buffer layer. The optical and crystalline properties of the superlattices were studied by low-temperature photoluminescence spectra and high resolution transition electron microscopy. In order to determine the interface of SLs, the samples were tested by Raman-scattering spectra at room temperature. Results indicated that the peak wavelength of SLs with clear interfaces and integrated periods is between 2.0 and 2.6 mu m. The SL interface between InAs and GaSb is InSb-like.
Resumo:
Some differences were observed between conventional molecular-beam epitaxy (MBE) and mobility enhanced epitaxy (MEE) of InAs on a vicinal GaAs(001) substrate in the variation of the number density N of the InAs islands, with additional InAs coverage (theta - theta(c)) after the critical InAs coverage theta(c) during the two- to three-dimensional (2D-3D) transition. For MBE the variation was consistent with the power law N(theta) (theta similar to theta(c))(alpha); while for MEE, the linear relation N(theta) proportional to (theta - theta(c)) was observed. The difference is discussed in terms of the randomness in the nucleation of the InAs islands.
Resumo:
A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.
Resumo:
GaSb 1 mu m-thick layers were grown by molecular beam epitaxy on GaAs (001). The effects of the growth conditions on the crystalline quality, surface morphology, electrical properties and optical properties were studied by double crystalline x-ray diffraction, atomic force microscopy, Hall measurement and photoluminescence spectroscopy, respectively. It was found that the surface roughness and hole mobility are highly dependent on the antimony-to-gallium flux ratios and growth temperatures. The crystalline quality, electrical properties and optical properties of GaSb layers were also studied as functions of growth rate, and it was found that a suitably low growth rate is beneficial for the crystalline quality and electrical and optical properties. Better crystal quality GaSb layers with a minimum root mean square surface roughness of 0.1 nm and good optical properties were obtained at a growth rate of 0.25 mu m h(-1).
Resumo:
In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.
Resumo:
National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1
Resumo:
A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.
Resumo:
It is well known that asymmetry in the (001) direction can induce in-plane optical anisotropy (IPOA) in (001) quantum wells (QWs). In this letter, asymmetry is introduced in (001) GaAs/AlGaAs QWs by inserting 1 ML (monolayer) of InAs or AlAs at interfaces. Strong IPOA, which is comparable to that in the InGaAs/InP QWs with no common atom, is observed in the asymmetric GaAs/AlGaAs QW by reflectance difference spectroscopy. (C) 2006 American Institute of Physics.
High uniformity of self-organized InAs quantum wires on InAlAs buffers grown on misoriented InP(001)
Resumo:
Highly uniform InAs quantum wires (QWRs) have been obtained on the In0.5Al0.5As buffer layer grown on the InP substrate 8 degrees off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In0.5Al0.5As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001). (c) 2006 American Institute of Physics.
Resumo:
The control of shape and spatial correlation of InAs-InAlAs-InP(001) nanostructure superlattices has been realized by changing the As overpressure during the molecular-beam epitaxy (MBE) growth of InAs layers. InAs quantum wires (QWRs) are obtained under higher As overpressure (1x10(-5) Torr), while elongated InAs quantum dots (QDs) are formed under lower As overpressure (5x10(-6) or 2.5x10(-6) Torr). Correspondingly, spatial correlation changes from vertical anti-correlation in QWR superlattices to vertical correlation in QD superlattices, which is well explained by the different alloy phase separation in InAlAs spacer layers triggered by the InAs nanostrcutures. It was observed that the alloy phase separation in QD superlattices could extend a long distance along the growth direction, indicating the vertical correlation of QD superlattices can be kept in a wide range of spacer layer thickness.
Resumo:
We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Various low-temperature (LT) ultra-thin buffer layers have been fabricated on the GaAs (001) substrate. The buffer layer is decoupled from the host substrate by introducing low-temperature defects. The 400 nm In0.25Ga0.75As films were grown on these substrates to test the 'compliant' effects of the buffer layers. Atomic force microscopy, photoluminescence, double crystal x-ray diffraction and transmission electron microscopy were used to estimate the quality of the ln(0.25)Ga(0.75)As layer. The measurements indicated that the misfit strains in the epilayer can be accommodated by the LT ultra-thin buffer layer. The strain accommodation effects of the LT defects have been discussed in detail.
Resumo:
The hydrogen-implanted Si substrate has been used for the fabrication of the "compliant substrate", which can accommodate the mismatch strain during the heteroepitaxy. The compliance of the substrate can be modulated by the energy and dose of implanted hydrogen. In addition, the defects caused by implantation act as the gettering center for the internal gettering of the harmful metallic impurities. Compared with SiC films growth on substrate without implantation. all the measurements indicated that the mismatch strains in the SiC films grown on this substrate have been released and the crystalline qualities have been improved. It is a practical technique used for the compliant substrate fabrication and compatible with the semiconductor industry. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Thin GaAs/AlAs and GaAs/GaAs buffer layer structure have been fabricated on the GaAs(001) substrate. The top GaAs buffer layer is decoupled from the host substrate by introduction of a low temperature thin interlayer (AlAs or GaAs), which was mechanically behaved like the compliant substrate. Four hundred nanometer In0.25Ga0.75As films were grown on these substrates and the traditional substrate directly. Photoluminescence (PL), double-crystal X-ray diffraction (DCXRD) and atomic force microscopy (AFM) measurements were used to estimate the quality of the In0.25Ga0.75As layer and the compliant effects of the low temperature buffer layer. All the measurements shown that the qualities of epilayer have been improved and the substrate have been deteriorated severely. The growth technique of the thin GaAs/AlAs structure was found to be simple but very powerful for heteroepitaxy. (C) 2003 Elsevier Science B.V All rights reserved.