251 resultados para CO2 laser annealing
Resumo:
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.
Resumo:
The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm(2) by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 degrees C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ta2O5 films were deposited by conventional electron beam evaporation method and then annealed in air at different temperature from 873 to 1273 K. It was found that the film structure changed from amorphous phase to hexagonal phase when annealed at 1073 K, then transformed to orthorhombic phase after annealed at 1273 K. The transmittance was improved after annealed at 873 K, and it decreased as the annealing temperature increased further. The total integrated scattering (TIS) tests and AFM results showed that both scattering and root mean square (RMS) roughness of films increased with the annealing temperature increasing. X-ray photoelectron spectroscopy (XPS) analysis showed that the film obtained better stoichiometry and the O/Ta ratio increased to 2.50 after annealing. It was found that the laser-induced damage threshold (LIDT) increased to the maximum when annealed at 873 K, while it decreased when the annealing temperature increased further. Detailed damaged models dominated by different parameters during annealing were discussed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
ZnO thin films were deposited on glass substrates at room temperature (RT) similar to 500 degrees C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 degrees C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments: the grain size increased and stress relaxed for the films deposited at 200-500 degrees C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that E-g of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 degrees C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.
Resumo:
Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.
Resumo:
Far-field spot compression without energy loss in main lob is of great significance to wireless laser communication. In this letter, we propose two schemes to obtain far-field spot compression without energy loss in main lob. One scheme is based on the simulated annealing (SA) algorithm. Using SA algorithm, we design the phase profile of the diffractive phase element (DPE). Using the designed DPE, far-field spot compression without energy loss in main lob is achieved. The other scheme is based on YG algorithm. By means of YG algorithm, we appropriately designed the DPE in the emitting plane. Using the DPE, far-field spot compression without energy loss in main lob is obtained. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Crystallization in amorphous Ge2Sb2Te5 films by irradiation with femtosecond laser was investigated. The reflectivity and X-ray diffraction measurements confirmed that the crystalline state has been achieved in amorphous Ge2Sb2Te5 films under the irradiation of fermosecond laser with an average power of 65 mW at a frequency of 1000 Hz and a pulsed width of 120 fs. The surface morphology before and after femtosecond laser irradiation was studied by scanning electron microscope; results showed that the surface of films with irradiation of femtosecond laser was composed of some the crystallized micro-region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report on three-dimensional precipitation of Au nanoparticles in gold ions-doped silicate glasses by a femtosecond laser irradiation and further annealing. Experimental results show that PbO addition plays the double roles of inhibiting hole-trapped centers generation and promoting formation and growth of gold nanoparticles. Additionally, glass containing PbO shows an increased non-linear absorption after femtosecond laser irradiation and annealing. The observed phenomena are significant for applications such as fabrications of three-dimensional multi-colored images inside transparent materials and three-dimensional optical memory, and integrated micro-optical switches. (c) 2007 Elsevier B.V. All rights reserved.