148 resultados para 658.001


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that asymmetry in the (001) direction can induce in-plane optical anisotropy (IPOA) in (001) quantum wells (QWs). In this letter, asymmetry is introduced in (001) GaAs/AlGaAs QWs by inserting 1 ML (monolayer) of InAs or AlAs at interfaces. Strong IPOA, which is comparable to that in the InGaAs/InP QWs with no common atom, is observed in the asymmetric GaAs/AlGaAs QW by reflectance difference spectroscopy. (C) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly uniform InAs quantum wires (QWRs) have been obtained on the In0.5Al0.5As buffer layer grown on the InP substrate 8 degrees off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In0.5Al0.5As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001). (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of shape and spatial correlation of InAs-InAlAs-InP(001) nanostructure superlattices has been realized by changing the As overpressure during the molecular-beam epitaxy (MBE) growth of InAs layers. InAs quantum wires (QWRs) are obtained under higher As overpressure (1x10(-5) Torr), while elongated InAs quantum dots (QDs) are formed under lower As overpressure (5x10(-6) or 2.5x10(-6) Torr). Correspondingly, spatial correlation changes from vertical anti-correlation in QWR superlattices to vertical correlation in QD superlattices, which is well explained by the different alloy phase separation in InAlAs spacer layers triggered by the InAs nanostrcutures. It was observed that the alloy phase separation in QD superlattices could extend a long distance along the growth direction, indicating the vertical correlation of QD superlattices can be kept in a wide range of spacer layer thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various low-temperature (LT) ultra-thin buffer layers have been fabricated on the GaAs (001) substrate. The buffer layer is decoupled from the host substrate by introducing low-temperature defects. The 400 nm In0.25Ga0.75As films were grown on these substrates to test the 'compliant' effects of the buffer layers. Atomic force microscopy, photoluminescence, double crystal x-ray diffraction and transmission electron microscopy were used to estimate the quality of the ln(0.25)Ga(0.75)As layer. The measurements indicated that the misfit strains in the epilayer can be accommodated by the LT ultra-thin buffer layer. The strain accommodation effects of the LT defects have been discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen-implanted Si substrate has been used for the fabrication of the "compliant substrate", which can accommodate the mismatch strain during the heteroepitaxy. The compliance of the substrate can be modulated by the energy and dose of implanted hydrogen. In addition, the defects caused by implantation act as the gettering center for the internal gettering of the harmful metallic impurities. Compared with SiC films growth on substrate without implantation. all the measurements indicated that the mismatch strains in the SiC films grown on this substrate have been released and the crystalline qualities have been improved. It is a practical technique used for the compliant substrate fabrication and compatible with the semiconductor industry. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin GaAs/AlAs and GaAs/GaAs buffer layer structure have been fabricated on the GaAs(001) substrate. The top GaAs buffer layer is decoupled from the host substrate by introduction of a low temperature thin interlayer (AlAs or GaAs), which was mechanically behaved like the compliant substrate. Four hundred nanometer In0.25Ga0.75As films were grown on these substrates and the traditional substrate directly. Photoluminescence (PL), double-crystal X-ray diffraction (DCXRD) and atomic force microscopy (AFM) measurements were used to estimate the quality of the In0.25Ga0.75As layer and the compliant effects of the low temperature buffer layer. All the measurements shown that the qualities of epilayer have been improved and the substrate have been deteriorated severely. The growth technique of the thin GaAs/AlAs structure was found to be simple but very powerful for heteroepitaxy. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the growth feature of GaN on GaAs (0 0 1) substrates grown by metalorganic chemical vapor deposition (MOCVD), the crystallinity of GaN buffer layers with different thicknesses was investigated by using double crystal X-ray diffraction (DCXRD) measurements. The XRD results showed that the buffer layers consist of predominantly hexagonal GaN (h-GaN) and its content increases with buffer layer thickness. The nominal GaN (111) reflections with chi at 54.74degrees can be detected easily, while (0 0 2) reflections are rather weak. The integrated intensity of reflections from (111) planes is 4-6 times that of (0 0 2) reflections. Possible explanations are presented. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extended technique derived from triple-axis diffraction setup was proposed to measure lattice parameters of cubic GaN(c-GaN) films. The fully relaxed lattice parameters of c-GaN are determined to be 4.5036+0.0004 Angstrom, which is closer to the values of a hypothetical perfect crystal. The speculated zero setting correction (Deltatheta) is very slight and within the range of the accuracy of measurement. Additionally, we applied this method to analyze strain of four different kinds of c-GaN samples. It is found that in-plane strain caused by large lattice mismatch and thermal expansion coefficients mismatch directly influence the epilayer growth at high temperatures, indicating that the relaxation of tensile strain after thermal annealing helps to improve the crystalline quality of c-GaN films and optical properties. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical constants epsilon(E)=epsilon(1)(E)+iepsilon(2)(E) of unintentionally doped cubic GaN grown on GaAs(001) have been measured at 300 K using spectral ellipsometry in the range of 1.5-5.0 eV. The epsilon(E) spectra display a structure, associated with the critical point at E-0 (direct gap) and some contribution mainly coming from the E-1 critical point. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden-Munoz model dielectric function [M. Munoz et al., J. Appl. Phys. 92, 5878 (2002)]. This model is based on the electronic energy-band structure near critical points plus excitonic and band-to-band Coulomb-enhancement effects at E-0, E-0 + Delta(0) and the E-1, E-1 + Delta(1), doublet. In addition to evaluating the energy of the E-0 critical point, the binding energy (R-1) of the two-dimensional exciton related to the E-1 critical point was estimated using the effective mass/k.p theory. The line, shape of the imaginary part of the cubic-GaN dielectric function shows excitonic effects at room temperature not withstanding that the exciton was not resolved. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.