261 resultados para 1.3 MU-M


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:15:32Z No. of bitstreams: 1 Large-Signal Performance of 1.3 mu m InAs-GaAs quantum-dot lasers.pdf: 281494 bytes, checksum: 1ebcdfdc887e3a3b279e07b3f655167b (MD5)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-dependent modulation characteristics of 1.3 mu m InAs/GaAs quantum dot (QD) lasers under small signals have been carefully studied at various bias currents. Based on experimental observations, it is found that the modulation bandwidth significantly increases when excited state (ES) lasing emerges at high temperature. This is attributed to additional photons emitted by ES lasing which contribute to the modulation response. A rate equation model including two discrete electron energy levels and the level of wetting layer has been used to investigate the temperature-dependent dynamic behavior of the QD lasers. Numerical investigations confirm that the significant jump for the small signal modulation response is indeed caused by ES photons. Furthermore, we identify how the electron occupation probabilities of the two discrete energy levels can influence the photon density of different states and finally the modulation rate. Both experiments and numerical analysis show that the modulation bandwidth of QD lasers at high temperature can be increased by injecting more carriers into the ES that has larger electron state degeneracy and faster carrier's relaxation time than the ground state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate 10 Gb/s directly-modulated 1.3 mu m InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 mu m and a cavity length of 600 mu m are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50 degrees C are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical study of the self-heating effect on the two-state lasing behaviors in 1.3-mu m self-assembled InAs-GaAs quantum dot (QD) lasers is presented. Lasing spectra under different injected currents, light-current (L-I) curves measured in continuous and pulsed regimes as well as a rate-equation model considering the current heating have been employed to analyze the ground-state (GS) and excited-state (ES) lasing processes. We show that the self-heating causes the quenching of the GS lasing and the ES lasing by the increased carrier escape rate and the reduced maximum modal gain of GS and ES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the fabrication of 1.3 mum Si-based MEMS tunable optical filter, by surface micromaching. Through wet etching of polyimide sacrificial layer, a tunable Fabry-Perot filter was successfully fabricated. We make the capacitance measurement of the prototype device, compare the experimental curve with the theoretical one, and explain the difference between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of GalnNAs/GaAs quantum well (QW) has been investigated by solid-source molecular beam epitaxy (MBE). N was introduced by a dc-active plasma source. Highest N concentration of 2.6% in GaInNAs/GaAs QW was obtained, corresponding to the photoluminescence peak wavelength of 1.57 mum at 10K. The nitrogen incorporation behavior in MBE growth and the quality improvement of the QW have been studied in detail. 1.3 mum GaInNAs/GaAs SQW laser and MQW resonant-cavity enhanced photodetector have been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetector operating at 1.3 mum with the full-width at half-maximum of 5.5 nm was demonstrated. The GaInNAs RCE photodetector was grown by molecular-beam epitaxy using an ion-removed dc-plasma cell as nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature that is very beneficial for applications in long-wavelength absorption devices. For a 100-mum diameter RCE photodetector, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3-dB bandwidth is 308 MHz. The reasons resulting in the poor high speed property were analyzed. The tunable wavelength of 18 nm with the angle of incident light was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A normal-incident SiGe/Si multiple quantum wells (MQWs) photodetector was reported. The structure and fabrication process of the photodetector were introduced. The photocurrent spectra measurement showed that the response spectra was expanded to 1.3 mu m wavelength. The quantum efficiency of the photodetector was 0.1% at 1.3 mu m and 20% at 0.95 mu m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.3 mu m strained-layer multi-quantum wells complex-coupled distributed feedback lasers with a wide temperature range of 20 to 100 degrees C are reported. The low threshold current of 10mA and high single-facet slope efficiency of 0.3mW/mA were obtained for an as cleaved device. The single mode yield was as high as 80%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface morphology and optical properties of 1.3 mum self-organized InGaAs/GaAs quantum dots structure grown by molecular beam epitaxy have been investigated by atomic force microscopy and photoluminescence measurements. It has been shown that the surface morphology evolution and emission wavelengths of InGaAs/GaAs QDs can be controlled effectively via cycled monolayer deposition methods due to the reduction of the surface strain. Our results provide important information for optimizing the epitaxial parameters for obtaining 1.3 mum long wavelength emission quantum dots structures. (C) 2002 Elsevier Science B.V. All rights reserved.