570 resultados para Tb3 doped


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient photoconductivity and its light-induced change were investigated by using a Model 4400 boxcar averager and signal processor for lightly boron-doped a-Si : H films. The transient photoconductivities of the sample were measured at an annealed state and light-soaked states. The transient decay process of the photoconductivity can be fitted fairly well by a second-order exponential decay function, which indicates that the decay process is related with two different traps. It is noteworthy that the photoconductivity of the film increases after light-soaking. This may be due to the deactivity of the boron acceptor B-4(-), and thus some of the boron atoms can no longer act as acceptors and drives E-F to shifts upward. Consequently, the number of effective recombination centers may be reduced and so the photoconductivity increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the investigation of temperature and excitation power dependence in photoluminescence spectroscopy measured in Mg-doped GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition, The objective is to examine the effects of rapid-thermal annealing on Mg-related emissions. It is observed that the peak position of the 2.7-2.8 eV emission line is a function of the device temperature and annealing conditions, The phenomenon is attributed to Coulomb-potential fluctuations in the conduction and valence band edge and impurity levels due to the Mg-related complex dissociation. The blue shift of the 2.7-2.8 eV emission line with increasing excitation power provides clear evidence that a donor-acceptor recombination process underlies the observed emission spectrum. In addition, quenching of minor peaks at 3.2 and 3.3 eV are observed and their possible origin is discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed the decrease of the hysteresis effect and the transition from the stable to the dynamic domain regime in doped superlattices with increasing temperature. The current-voltage characteristics and the behaviours of the domain boundary are dominated by the temperature-dependent lineshape of the electric field dependence of the drift velocity (V(F)), As the peak-valley ratio in the V(F) curve decreases with increasing temperature, the hysteresis will diminish and temporal current self-oscillations will occur. The simulated calculation, which takes the difference in V(F) curves into consideration, gives a good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a detailed investigation on the temperature-dependent behavior of photoluminescence from molecular beam epitaxy (MBE)-grown chlorine-doped ZnSe epilayers. The overwhelming neutral donor bound exciton ((ClX)-X-0) emission at 2.797 eV near the band edge with a full-width at half-maximum (FWHM) of similar to 13 meV reveals the high crystalline quality of the samples used. In our experiments, the quick quenching of the (ClX)-X-0 line above 200 K is mainly due to the presence of a nonradiative center with a thermal activation energy of similar to 90 meV, The same activation energy and similar quenching tendency of the (ClX)-X-0 line and the I-3 line at 2.713 eV indicate that they originate from the same physical mechanism. We demonstrate for the first time that the dominant decrease of the integrated intensity of the I, line is due to the thermal excitation of the "I-3 center"-bound excitons to its free exciton states, leaving the "I-3 centers" as efficient nonradiative centers. The optical performance of ZnSe materials is expected to be greatly improved if the density of the "I-3 center" can be controlled. The decrease in the luminescence intensity at moderately low temperature (30-200 K) of the (ClX)-X-0 line is due to the thermal activation of neutral-donor-bound excitons ((ClX)-X-0) to free excitons. (C) 2000 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogenated amorphous SiOx films (a-SiOx:H) with various oxygen contents have been prepared using plasma enhanced chemical vapor deposition technique. The films were implanted with erbium and annealed by rapid thermal annealing. An intense photoluminescence (PL) of Er at 1.54 mum has been observed at 77 K and at room temperature. The PL intensity depends strongly on both the oxygen content of the film and the rapid thermal annealing temperature and reaches its maximum if the ratio of O/Si in the film is approximately equal to 1.0 at 77 K and to 1.76 at room temperature. The microstructure of the film also has strong influences on the PL intensity. The PL intensity at 250 K is slightly more than a half of that at 15 K. It means that the temperature quenching effect of the PL intensity is very weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terbium-doped zinc oxide nanoparticles have been prepared by hydrolyzing zinc acetate and terbium acetate. Nanoparticle-matrix-facilitated photoluminescence which is related to Tb3+ ions has been observed for ZnO:Tb nanoparticles. The dependence of emission intensity on doping concentration of Tb3+ ions has been investigated. An energy transfer from excited states of ZnO hosts to dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increasing Tb content at the expense of emission from defect states in ZnO matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) measurements were performed on several series of single-side Si-doped pseudomorphic high electron mobility transistors (p-HEMTs) quantum well (QW) samples, with different spacer layer widths, well widths and Si delta -doped concentrations , under different temperatures and excitation power densities. The dynamic competitive luminescence mechanism between the radiations of e2-hh1 and e1-hh1 was discussed in detail. The confining potential, subband energies, corresponding envelope functions, subband occupations and transferring efficiency etc., were calculated by self-consistent finite differential method at different temperatures in comparison with the present experiment results. The relative variation of the integrated luminescence intensity of the two transitions (e1-hh1 and e2-hh1) was found to be dependent on the temperature and the structure's properties, e. g. spacer layer width, dopant concentration and well width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon films co-doped with oxygen (O), boron (B) and phosphorus (P) were fabricated using PECVD technique. The erbium (Er) implanted samples were annealed in a N-2 ambient by rapid thermal annealing. Strong photoluminescence (PL) spectra of these samples were observed at room temperature. The incorporation of O, B and P could not only enhance the PL intensity but also the thermal annealing temperature of the strongest PL intensity. It seems that the incorporation of B or P can decrease the grain boundary potential barriers thus leading to an easier movement of carriers and a stronger PL intensity. Temperature dependence of PL indicated the thermal quenching of Er-doped hydrogenated amorphous silicon is very weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrystalline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520 nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese doped CdS nanoparticles were synthesized in basic aqueous solution by using mercapto acetate as capping reagents. The nanoparticles were characterized by HRTEM, EPR, photoluminescence and optical absorption measurements. Out of our expectation, doping of Mn2+ ions altered the recombination paths in CdS nanoparticles markedly. The surface stares facilitated PL from Mn2+ doped CdS nanoparticles is reported. A complete suppression of the emission from surface states at room temperature when doping with Mn2+ ions has been observed for the first time. (C) 2000 Elsevier Science Ltd. All rights reserved.