425 resultados para Quantum Hall effect
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]
Resumo:
The wetting layers (WL) in InAs/GaAs quantum-dot system have been studied by reflectance difference spectroscopy (RDS), in which two structures related to the heavy-hole (HH) and light-hole (LH) transitions in the WL have been observed. The evolution and segregation behaviors of WL during Stranski-Krastanow (SK) growth mode have been studied from the analysis of the WL-related optical transition energies. It has been found that the segregation coefficient of Indium atoms varies linearly with the InAs amount in WL. In addition, the effect of the growth temperature on the critical thickness for InAs island formation has also been studied. The critical thickness defined by the appearance of InAs dots, which is determined by AFM, shows a complex variation with the growth temperature. However, the critical thickness determined by RDS is almost constant in the range of 510-540 degrees C.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.
Resumo:
We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.
Resumo:
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2 -7 mu m has been obtained with peaks at 3.1, 4.8 and 5.7 mu m. The bandgap energies of GaAs and Al0.2Ga0.8As at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
Resumo:
The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.
Resumo:
We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculations, that the exciton Aharonov-Bohm effect may account for the observed effects.
Resumo:
The nonlinear optical properties of semiconductor quantum wells driven by intense in-plane terahertz electric fields are investigated theoretically by employing the extended semiconductor Bloch equations. The dynamical Franz-Keldysh effect of the optical absorption near the band edge is analyzed with Coulomb correlation among the carriers included. The in-plane terahertz field induces a variety of behavior in the absorption spectra, including terahertz replicas of the (dark) 2p exciton and terahertz sidebands of the 1s exciton. The dependence of these interesting features on the intensity, frequency, and phase of the terahertz field is explored in detail.
Resumo:
We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The optical absorption of a GaAs/AlGaAs quantum dot superlattice nanoring (QDSLNR) under a lateral dc electric field and with magnetic flux threading the ring is investigated. This structure and configuration provides a unique opportunity to study the optical response of a superlattice under an inhomogeneous electric field, which is not easily realized for general quantum well superlattices (QWSLs) but naturally realized for QDSLNRs under a homogeneous lateral electric field. It has been shown that a lateral dc electric field gives rise to a substantial change of the optical absorption spectra. Under a low field, the excitonic optical absorption is dominated by a 1s exciton. And with the electric field increasing, the optical absorption undergoes a transition from 1s excitonic absorption to 0 excitronic WSL absorption. (The number of 0, and -1 and +1 below are WSLs index.) The -1 and the +1 WSLs corresponding to the maximum effective field can also be identified. Due to the inhomogeneity of the electric field, the peaks of the -1 and the +1 WSLs are diminished and between them there exist rich and complicated structures. This is in contrast to the general QWSLs under a homogenous electric field. The complicated structures can be understood by considering the inhomogeneity of the electric field along the ring, which results in the nearest-neighbor transition, the next-nearest-neighbor transition, etc., have a different value repectively, at different sites along the ring. This may give rise to multiple WSLs. We have also shown that the line shape of the optical absorption is not sensitive to the threading magnetic flux. The threading magnetic flux only gives rise to a slight diamagnetic shift. Thus the enhancement of the sensitivity to the flux allowing for observation of the excitonic Aharanov-Bohm effect in the plain nanoring is not expected in QDSLNRs.
Resumo:
The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.
Resumo:
Time-resolved Kerr rotation (TRKR) measurements based on pump-probe arrangement were carried out at 5 K on the monolayer fluctuation induced InAs/GaAs quantum disks grown on GaAs substrate without external magnetic field. The lineshape of TRKR signals shows an unusual dependence on the excitation wavelength, especially antisymmetric step-shaped structures appearing when the excitation wavelength was resonantly scanned over the heavy- and light-hole subbands. Moreover, these step structures possess an almost identical decay time of similar to 40 Ps which is believed to be the characteristic spin dephasing time of electrons in the extremely narrow InAs/GaAs quantum disks.
Resumo:
We consider the effect of image forces, arising due to a difference in dielectric permeabilities of the well layer and barrier layers, on the energy spectrum of an electron confined in a rectangular potential well under a magnetic field. Depending on the value and the sign of the dielectric mismatch, image forces can localize electrons near the interfaces of the well or in well centre and change the direct intersubband gaps into indirect ones. These effects can be controlled by variation of the magnetic field, offering possibilities for exact tuning of electronic devices.